Project

General

Profile

« Previous | Next » 

Revision e83cb2cb

Added by Benoit Parmentier over 9 years ago

global scaling up initial commit for mosaicing script to experiment with different weigted averages to deal with boundaries

View differences:

climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R
1
##############################  INTERPOLATION OF TEMPERATURES  #######################################
2
#######################  Script for assessment of scaling up on NEX ##############################
3
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA.
4
#Different options to explore mosaicing are tested.
5
#Analyses, figures, tables and data are also produced in the script.
6
#AUTHOR: Benoit Parmentier 
7
#CREATED ON: 04/14/2015  
8
#MODIFIED ON: 04/14/2015            
9
#Version: 4
10
#PROJECT: Environmental Layers project     
11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km and other tiles
12
#TODO:
13
#1) Split functions and master script
14
#2) Make this is a script/function callable from the shell/bash
15
#3) Check image format for tif
16

  
17
#################################################################################################
18

  
19
### Loading R library and packages        
20
#library used in the workflow production:
21
library(gtools)                              # loading some useful tools 
22
library(mgcv)                                # GAM package by Simon Wood
23
library(sp)                                  # Spatial pacakge with class definition by Bivand et al.
24
library(spdep)                               # Spatial pacakge with methods and spatial stat. by Bivand et al.
25
library(rgdal)                               # GDAL wrapper for R, spatial utilities
26
library(gstat)                               # Kriging and co-kriging by Pebesma et al.
27
library(fields)                              # NCAR Spatial Interpolation methods such as kriging, splines
28
library(raster)                              # Hijmans et al. package for raster processing
29
library(gdata)                               # various tools with xls reading, cbindX
30
library(rasterVis)                           # Raster plotting functions
31
library(parallel)                            # Parallelization of processes with multiple cores
32
library(maptools)                            # Tools and functions for sp and other spatial objects e.g. spCbind
33
library(maps)                                # Tools and data for spatial/geographic objects
34
library(reshape)                             # Change shape of object, summarize results 
35
library(plotrix)                             # Additional plotting functions
36
library(plyr)                                # Various tools including rbind.fill
37
library(spgwr)                               # GWR method
38
library(automap)                             # Kriging automatic fitting of variogram using gstat
39
library(rgeos)                               # Geometric, topologic library of functions
40
#RPostgreSQL                                 # Interface R and Postgres, not used in this script
41
library(gridExtra)
42
#Additional libraries not used in workflow
43
library(pgirmess)                            # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess}  
44
library(colorRamps)
45
library(zoo)
46
library(xts)
47

  
48
#### FUNCTION USED IN SCRIPT
49

  
50
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
51
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
52

  
53
load_obj <- function(f)
54
{
55
  env <- new.env()
56
  nm <- load(f, env)[1]
57
  env[[nm]]
58
}
59

  
60
create_dir_fun <- function(out_dir,out_suffix){
61
  if(!is.null(out_suffix)){
62
    out_name <- paste("output_",out_suffix,sep="")
63
    out_dir <- file.path(out_dir,out_name)
64
  }
65
  #create if does not exists
66
  if(!file.exists(out_dir)){
67
    dir.create(out_dir)
68
  }
69
  return(out_dir)
70
}
71

  
72
 #Remove models that were not fitted from the list
73
#All modesl that are "try-error" are removed
74
remove_errors_list<-function(list_items){
75
  
76
  #This function removes "error" items in a list
77
  list_tmp<-list_items
78
    if(is.null(names(list_tmp))){
79
    names(list_tmp) <- paste("l",1:length(list_tmp),sep="_")
80
    names(list_items) <- paste("l",1:length(list_tmp),sep="_")
81
  }
82

  
83
  for(i in 1:length(list_items)){
84
    if(inherits(list_items[[i]],"try-error")){
85
      list_tmp[[i]]<-0
86
    }else{
87
    list_tmp[[i]]<-1
88
   }
89
  }
90
  cnames<-names(list_tmp[list_tmp>0])
91
  x <- list_items[match(cnames,names(list_items))]
92
  return(x)
93
}
94

  
95

  
96
plot_daily_mosaics <- function(i,list_param_plot_daily_mosaics){
97
  #Purpose:
98
  #This functions mask mosaics files for a default range (-100,100 deg).
99
  #It produces a masked tif in a given dataType format (FLT4S)
100
  #It creates a figure of mosaiced region being interpolated.
101
  #Author: Benoit Parmentier
102
  #Parameters:
103
  #lf_m: list of files 
104
  #reg_name:region name with tile size included
105
  #To do:
106
  #Add filenames
107
  #Add range
108
  #Add output dir
109
  #Add dataType_val option
110
  
111
  ##### BEGIN ########
112
  
113
  #Parse the list of parameters
114
  lf_m <- list_param_plot_daily_mosaics$lf_m
115
  reg_name <- list_param_plot_daily_mosaics$reg_name
116
  out_dir_str <- list_param_plot_daily_mosaics$out_dir_str
117
  out_suffix <- list_param_plot_daily_mosaics$out_suffix
118
  l_dates <- list_param_plot_daily_mosaics$l_dates
119

  
120

  
121
  #list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str)
122

  
123
  
124
  #rast_list <- vector("list",length=length(lf_m))
125
  r_test<- raster(lf_m[i])
126

  
127
  m <- c(-Inf, -100, NA,  
128
         -100, 100, 1, 
129
         100, Inf, NA) #can change the thresholds later
130
  rclmat <- matrix(m, ncol=3, byrow=TRUE)
131
  rc <- reclassify(r_test, rclmat,filename=paste("rc_tmp_",i,".tif",sep=""),dataType="FLT4S",overwrite=T)
132
  file_name <- unlist(strsplit(basename(lf_m[i]),"_"))
133
  
134
  #date_proc <- file_name[7] #specific tot he current naming of files
135
  date_proc <- l_dates[i]
136
  #paste(raster_name[1:7],collapse="_")
137
  #add filename option later
138
  extension_str <- extension(filename(r_test))
139
  raster_name_tmp <- gsub(extension_str,"",basename(filename(r_test)))
140
  raster_name <- file.path(out_dir_str,paste(raster_name_tmp,"_masked.tif",sep=""))
141
  r_pred <- mask(r_test,rc,filename=raster_name,overwrite=TRUE)
142
  
143
  res_pix <- 1200
144
  #res_pix <- 480
145

  
146
  col_mfrow <- 1
147
  row_mfrow <- 1
148
  
149
  png(filename=paste("Figure9_clim_mosaics_day_test","_",date_proc,"_",reg_name,"_",out_suffix,".png",sep=""),
150
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
151

  
152
  plot(r_pred,main=paste("Predicted on ",date_proc , " ", reg_name,sep=""),cex.main=1.5)
153
  dev.off()
154
  
155
  return(raster_name)
156
  
157
}
158

  
159
plot_screen_raster_val<-function(i,list_param){
160
  ##USAGE###
161
  #Screen raster list and produced plot as png.
162
  fname <-list_param$lf_raster_fname[i]
163
  screenRast <- list_param$screenRast
164
  l_dates<- list_param$l_dates
165
  out_dir_str <- list_param$out_dir_str
166
  prefix_str <-list_param$prefix_str
167
  out_suffix_str <- list_param$out_suffix_str
168
  
169
  ### START SCRIPT ####
170
  date_proc <- l_dates[i]
171
  
172
  if(screenRast==TRUE){
173
    r_test <- raster(fname)
174

  
175
    m <- c(-Inf, -100, NA,  
176
         -100, 100, 1, 
177
         100, Inf, NA) #can change the thresholds later
178
    rclmat <- matrix(m, ncol=3, byrow=TRUE)
179
    rc <- reclassify(r_test, rclmat,filename=paste("rc_tmp_",i,".tif",sep=""),dataType="FLT4S",overwrite=T)
180
    #file_name <- unlist(strsplit(basename(lf_m[i]),"_"))
181
    extension_str <- extension(filename(r_test))
182
    raster_name_tmp <- gsub(extension_str,"",basename(filename(r_test)))
183
    raster_name <- file.path(out_dir_str,paste(raster_name_tmp,"_masked.tif",sep=""))
184
  
185
    r_pred <- mask(r_test,rc,filename=raster_name,overwrite=TRUE)
186
  }else{
187
    r_pred <- raster(fname)
188
  }
189
  
190
  #date_proc <- file_name[7] #specific tot he current naming of files
191
  #date_proc<- "2010010101"
192

  
193
  #paste(raster_name[1:7],collapse="_")
194
  #add filename option later
195

  
196
  res_pix <- 960
197
  #res_pix <- 480
198

  
199
  col_mfrow <- 1
200
  row_mfrow <- 1
201
  
202
#  png(filename=paste("Figure10_clim_world_mosaics_day_","_",date_proc,"_",tile_size,"_",out_suffix,".png",sep=""),
203
#    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
204
  png(filename=paste(prefix_str,"_",date_proc,"_",tile_size,"_",out_suffix_str,".png",sep=""),
205
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
206

  
207
  plot(r_pred,main=paste("Predicted on ",date_proc , " ", tile_size,sep=""),cex.main=1.5)
208
  dev.off()
209

  
210
}
211

  
212
############################################
213
#### Parameters and constants  
214

  
215
#on ATLAS
216

  
217
in_dir <- "~/Data/IPLANT_project/mosaicing_data_test/reg2"
218

  
219
y_var_name <- "dailyTmax" #PARAM1
220
interpolation_method <- c("gam_CAI") #PARAM2
221
out_suffix <- "mosaic_run10_1500x4500_global_analyses_03252015" #PARAM3
222
out_dir <- in_dir #PARAM4
223
create_out_dir_param <- TRUE #PARAM 5
224

  
225
mosaic_plot <- FALSE #PARAM6
226

  
227
#if daily mosaics NULL then mosaicas all days of the year
228
day_to_mosaic <- c("20100101","20100102","20100103","20100104","20100105",
229
                   "20100301","20100302","20100303","20100304","20100305",
230
                   "20100501","20100502","20100503","20100504","20100505",
231
                   "20100701","20100702","20100703","20100704","20100705",
232
                   "20100901","20100902","20100903","20100904","20100905",
233
                   "20101101","20101102","20101103","20101104","20101105") #PARAM7
234
  
235
#CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
236
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1
237
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
238

  
239
proj_str<- CRS_WGS84 #PARAM 8 #check this parameter
240
file_format <- ".rst" #PARAM 9
241
NA_value <- -9999 #PARAM10
242
NA_flag_val <- NA_value
243
                                   
244
tile_size <- "1500x4500" #PARAM 11
245
mulitple_region <- TRUE #PARAM 12
246

  
247
region_name <- "world" #PARAM 13
248
plot_region <- FALSE
249

  
250
########################## START SCRIPT ##############################
251

  
252

  
253
####### PART 1: Read in data ########
254

  
255
if(create_out_dir_param==TRUE){
256
  out_dir <- create_dir_fun(out_dir,out_suffix)
257
  setwd(out_dir)
258
}else{
259
  setwd(out_dir) #use previoulsy defined directory
260
}
261

  
262
setwd(out_dir)
263

  
264
###Table 1: Average accuracy metrics
265
################## PLOTTING WORLD MOSAICS ################
266

  
267
lf_mosaic_pred_1500x4500 <-list.files(path=file.path(in_dir),    
268
           pattern=paste(".*.tif$",sep=""),full.names=T) 
269

  
270
r1 <- raster(lf_mosaic_pred_1500x4500[11]) 
271
r2 <- raster(lf_mosaic_pred_1500x4500[2]) 
272

  
273
assignVal<- function(x){rep(1,x)} 
274
r_outline <- init(r2,fun=assignVal,filename="test.rst",overwrite=T)
275
r_pol <- rasterToPolygons(r_outline,dissolve=T)
276

  
277
#centroid distance
278
c1 <- gCentroid(x,byid=TRUE) 
279
pt <- gCentroid(shp1)
280

  
281
#then distance...
282
gDistance
283

  
284

  
285
#Then scale on 1 to zero? or 0 to 1000
286
#e.g. for a specific pixel
287
#weight_sum=0.2 +0.4 +0.4+0.2=1.2
288
#sum_val (0.2*val1+0.4*val2+0.4*val3+0.2*val4)
289
#m_val= /weight_sum 
290

  
291
#can do mosaic with sum?? for both weighted sum and val
292
#
293
#can use gdal calc...
294

  
295
r_m <- r1 + r2
296
name_method <- paste(interpolation_method,"_",y_var_name,"_",sep="")
297
##Use python code written by Alberto Guzman
298

  
299
#system("MODULEPATH=$MODULEPATH:/nex/modules/files")
300
#system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex")
301
lf1 <- lf_world_pred_1000x3000
302
lf2 <- lf_world_pred_1500x4500
303

  
304
#module_path <- ""
305
module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/"
306
#sh /nobackupp6/aguzman4/climateLayers/sharedCode/gdalCalDiff.sh file1.tif file2.tif output.tif
307
#/nobackupp6/aguzman4/climateLayers/sharedCode/mosaicUsingGdalMerge.py
308
#l_dates <- paste(day_to_mosaic,collapse=",",sep=" ")
309
l_dates <- paste(day_to_mosaic,collapse=",")
310
## use region 2 first
311
lf_out <- paste("diff_world_","1000_3000","by1500_4500_","mod1","_",l_dates,out_suffix,"_",file_format,sep="")
312

  
313

  
314
for (i in 1:length(lf_out)){
315
  out_file <- lf_out[i]
316
  in_file1 <- lf1[i]
317
  in_file2 <- lf2[i]
318
    
319
  cmd_str <- paste("sh", file.path(module_path,"gdalCalDiff.sh"),
320
                 in_file1,
321
                 in_file2,
322
                 out_file,sep=" ")
323
  system(cmd_str)
324

  
325
}
326

  
327
##################### END OF SCRIPT ######################

Also available in: Unified diff