Project

General

Profile

« Previous | Next » 

Revision e8db2a0f

Added by Benoit Parmentier about 8 years ago

adding figures and fixing item number of date files

View differences:

climate/research/oregon/interpolation/global_product_assessment_part0_functions.R
262 262
  list_tiles_predicted_masked <- list_param$list_tiles_predicted_masked
263 263
  df_missing_tiles_day <- list_param$df_missing_tiles_day    
264 264
  r_overlap_m <- list_param$r_overlap_m
265
  item_no <- list_param$item_no
265 266
  num_cores <- list_param$num_cores # 6 #PARAM 14
266 267
  region_name <- list_param$region_name #<- "world" #PARAM 15
267 268
  NA_flag_val <-list_param$NA_flag_val
......
363 364
  in_dir1 <- list_param$in_dir1 
364 365
  region_name <- list_param$region_name #e.g. c("reg23","reg4") #run only for one region
365 366
  y_var_name <- list_param$y_var_name # e.g. dailyTmax" #PARAM3
366
  interpolation_method <- list_param_run_assessment_prediction$interpolation_method #c("gam_CAI") #PARAM4
367
  out_suffix <- list_param_run$out_suffix #output suffix e.g."run_global_analyses_pred_12282015" #PARAM5
367
  interpolation_method <- list_param$interpolation_method #c("gam_CAI") #PARAM4
368
  out_suffix <- list_param$out_suffix #output suffix e.g."run_global_analyses_pred_12282015" #PARAM5
368 369
  out_dir <- list_param$out_dir #<- "/nobackupp8/bparmen1/" #PARAM6
369 370
  create_out_dir_param <-list_param$create_out_dir_param #if TRUE output dir created #PARAM7
370 371
  proj_str <- list_param$proj_str # CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84, #PARAM8
......
376 377
  
377 378
  ##for plotting assessment function
378 379
  
379
  item_no <- list_param_run_assessment_prediction$mosaic_plot  #PARAM14
380
  item_no <- list_param$item_no  #PARAM14
380 381
  day_to_mosaic_range <- list_param$day_to_mosaic_range #PARAM15
381 382
  countries_shp <- list_param$countries_shp #PARAM17
382 383
  plotting_figures <- list_param$plotting_figures #PARAM18
......
384 385
  pred_mod_name <- list_param$pred_mod_name
385 386
  metric_name <- list_param$metric_name
386 387
  
388
  year_predicted <- list_param$list_year_predicted[i] #selected year
389

  
387 390
  ########################## START SCRIPT #########################################
388 391
  
389
  #system("ls /nobackup/bparmen1")
392
  #system("ls /nobackup/bparmen1"
390 393
  out_dir <- in_dir
391 394
  if(create_out_dir_param==TRUE){
392 395
    out_dir <- create_dir_fun(out_dir,out_suffix)
......
400 403
  #list_outfiles <- vector("list", length=35) #collect names of output files, this should be dynamic?
401 404
  #list_outfiles_names <- vector("list", length=35) #collect names of output files
402 405

  
403
  year_predicted <- list_param_run_assessment_prediction$list_year_predicted[i] 
404

  
405 406
  in_dir1_reg <- file.path(in_dir1,region_name)
406 407
  
407 408
  list_outfiles <- vector("list", length=14) #collect names of output files
......
475 476
  #gam_CAI_dailyTmax_predicted_mod1_0_1_20001231_30_1-39.7_165.1.tif
476 477
  
477 478
  #undebug(check_missing)
479

  
478 480
  test_missing <- try(lapply(1:length(list_lf_raster_tif_tiles),function(i){check_missing(lf=list_lf_raster_tif_tiles[[i]], 
479 481
                                                                      pattern_str=NULL,
480 482
                                                                      in_dir=out_dir,
......
486 488
                                                                      out_dir=".")}))
487 489

  
488 490
 
491
  #test_missing <- try(lapply(1:1,function(i){check_missing(lf=list_lf_raster_tif_tiles[[i]], 
492
  #                                                                    pattern_str=NULL,
493
  #                                                                    in_dir=out_dir,
494
  #                                                                    date_start=start_date,
495
  #                                                                    date_end=end_date,
496
  #                                                                    item_no=item_no, #9 for predicted tiles
497
  #                                                                    out_suffix=out_suffix,
498
  #                                                                    num_cores=num_cores,
499
  #                                                                    out_dir=".")}))
500
  
501
  #browser()
502
  
489 503
  df_time_series <- test_missing[[1]]$df_time_series
490 504
  head(df_time_series)
491 505

  
492 506
  table(df_time_series$missing)
493 507
  table(df_time_series$year)
494
  
508
  #browser()
495 509
  #####
496 510
  #Now combine df_time_series in one table
497 511
  
......
519 533
  
520 534
  ########################
521 535
  #### Step 2: examine overlap
536
  #browser()
522 537
  
523 538
  path_to_shp <- dirname(countries_shp)
524 539
  layer_name <- sub(".shp","",basename(countries_shp))
......
548 563
  #centroids_pts <- tmp_pts 
549 564
  
550 565
  r_mask <- raster(infile_mask)
551
  plot(r)
552
  plot(shps_tiles[[1]],add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX
566
  #plot(r)
567
  #plot(shps_tiles[[1]],add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX
553 568

  
554 569
  ## find overlap
555 570
  #http://gis.stackexchange.com/questions/156660/loop-to-check-multiple-polygons-overlap-in-r
......
562 577
    }
563 578
    #
564 579
  }
580
   
581
  #browser()
565 582
  
566 583
  names(shps_tiles) <- basename(unlist(in_dir_reg))
567 584
  r_ref <- raster(list_lf_raster_tif_tiles[[1]][1])
......
569 586
  tile_spdf <- shps_tiles[[1]]
570 587
  tile_coord <- basename(in_dir_reg[1])
571 588
  date_val <- df_missing$date[1]
572
  
573
  ### use rasterize
574
  spdf_tiles <- do.call(bind, shps_tiles) #bind all tiles together in one shapefile
575 589

  
576
  #function_product_assessment_part0_functions <- "global_product_assessment_part0_functions_11052016.R"
577
  #source(file.path(script_path,function_product_assessment_part0_functions)) #source all functions used in this script 
590
  ### use rasterize
591
  #spdf_tiles <- do.call(bind, shps_tiles) #bind all tiles together in one shapefile
592
  #Error in (function (classes, fdef, mtable)  : 
593
  #unable to find an inherited method for function 'bind' for signature '"missing", "missing"'
578 594

  
579 595
  #undebug(rasterize_tile_day)
580
  list_predicted <- rasterize_tile_day(1,
581
           list_spdf=shps_tiles,
582
           df_missing=df_missing,
583
           list_r_ref=list_r_ref,
584
           col_name="overlap",
585
           date_val=df_missing$date[1])
596
  #list_predicted <- rasterize_tile_day(1,
597
  #        list_spdf=shps_tiles,
598
  #         df_missing=df_missing,
599
  #         list_r_ref=list_r_ref,
600
  #         col_name="overlap",
601
  #         date_val=df_missing$date[1])
586 602
  #list_predicted <- mclapply(1:6,
587 603
  #         FUN=rasterize_tile_day,
588 604
  #         list_spdf=shps_tiles,
......
604 620
           mc.cores = num_cores)
605 621

  
606 622
  ##check that everything is correct:
607
  plot(r_mask)
608
  plot(raster(list_predicted[[1]]),add=T)
609
  plot(spdf_tiles_test,add=T,border="green",usePolypath = FALSE) #added usePolypath following error on brige and NEX
623
  #plot(r_mask)
624
  #plot(raster(list_predicted[[1]]),add=T)
625
  #plot(spdf_tiles_test,add=T,border="green",usePolypath = FALSE) #added usePolypath following error on brige and NEX
610 626

  
611 627
  ### Make a list of file
612 628
  out_suffix_str_tmp <- paste0(region_name,"_",out_suffix)
......
618 634
      
619 635
  writeLines(unlist(list_predicted),con=filename_list_predicted) #weights files to mosaic 
620 636

  
637
  browser()
638
  
621 639
  #out_mosaic_name_weights_m <- r_weights_sum_raster_name <- file.path(out_dir,paste("r_weights_sum_m_",mosaic_method,"_weighted_mean_",out_suffix,".tif",sep=""))
622 640
  #out_mosaic_name_prod_weights_m <- r_weights_sum_raster_name <- file.path(out_dir,paste("r_prod_weights_sum_m_",mosaic_method,"_weighted_mean_",out_suffix,".tif",sep=""))
623 641
  out_mosaic_name_predicted_m  <- file.path(out_dir_str,paste("r_overlap_sum_m_",out_suffix_str_tmp,".tif",sep=""))

Also available in: Unified diff