Project

General

Profile

« Previous | Next » 

Revision e8db2d42

Added by Benoit Parmentier over 10 years ago

assessment NEX run part2: debugging

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 05/15/2014            
8
#MODIFIED ON: 06/01/2014            
9 9
#Version: 3
10
#PROJECT: Environmental Layers project                                     
10
#PROJECT: Environmental Layers project     
11
#COMMENTS: analyses for run 3 global using 2 specific tiles
11 12
#################################################################################################
12 13

  
13 14
### Loading R library and packages        
......
68 69
#on ATLAS
69 70
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
70 71
#parent output dir : contains subset of the data produced on NEX
71
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run2_05122014/output/"
72
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/output"
72 73
# parent output dir for the curent script analyes
73
out_dir <-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas
74
out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/" #On NCEAS Atlas
75
out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/"
74 76
# input dir containing shapefiles defining tiles
75
in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run2_05122014/output/subset/shapefiles"
77
in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/output/subset/shapefiles"
76 78

  
77 79
#On NEX
78 80
#contains all data from the run by Alberto
......
85 87
in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
86 88
y_var_name <- "dailyTmax"
87 89
interpolation_method <- c("gam_CAI")
88
out_prefix<-"run2_global_analyses_05122014"
90
out_prefix<-"run3_global_analyses_05292014"
89 91

  
90 92
#out_dir <-paste(out_dir,"_",out_prefix,sep="")
91
create_out_dir_param <- TRUE
93
create_out_dir_param <- FALSE
92 94

  
93 95
if(create_out_dir_param==TRUE){
94 96
  out_dir <- create_dir_fun(out_dir,out_prefix)
......
105 107

  
106 108
###Table 1: Average accuracy metrics
107 109
###Table 2: daily accuracy metrics for all tiles
108

  
110
#lf_tables <- list.files(out_dir,)
109 111
summary_metrics_v <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_prefix,".txt",sep="")),sep=",")
110 112
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",")
111
#df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",")
113
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",")
112 114

  
113 115
########################## START SCRIPT ##############################
114 116

  
......
128 130
shps_tiles <- vector("list",length(list_shp_reg_files))
129 131
#collect info: read in all shapfiles
130 132
for(i in 1:length(list_shp_reg_files)){
133
  path_to_shp <- dirname(list_shp_reg_files[[i]])
134
  layer_name <- basename(list_shp_reg_files[[i]])
135
  shp1 <- readOGR(path_to_shp, layer_name)
131 136
  shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
132 137
  pt <- gCentroid(shp1)
133 138
  centroids_pts[[i]] <-pt
......
235 240
date_selected <- "20100101"
236 241
name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="")
237 242

  
238
pattern_str <- paste("mosaiced","_",name_method_var,".*.",date_selected,".*.tif",sep="")
239
lf_list <- list.files(pattern=pattern_str)
243
pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="")
244
lf_pred_list <- list.files(pattern=pattern_str)
240 245

  
241
for(i in 1:length(lf_list)){
246
for(i in 1:length(lf_pred_list)){
242 247
  
243
  r_pred <- raster(lf_list[i])
248
  r_pred <- raster(lf_pred_list[i])
244 249
  
245 250
  res_pix <- 480
246 251
  col_mfrow <- 1
......
255 260
  
256 261
}
257 262

  
263
## plotting of delta and clim for later scripts...
264

  
258 265
#### Now combined plot...
259 266

  
260 267
#pred_s <- stack(lf_list) #problem different extent!!
......
291 298
### Figure 5: plot map of average RMSE per tile at centroids
292 299

  
293 300
#Turn summary table to a point shp
294
coordinates(summary_metrics_v) <- cbind(long,lat)  
295
list_df_ac_mod <- vector("list",length=length(lf_list))
301

  
302
coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat)
303
proj4string(summary_metrics_v) <- CRS_WGS84
304
list_df_ac_mod <- vector("list",length=length(lf_pred_list))
296 305
for (i in 1:length(lf_list)){
297 306
  
298 307
  ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]

Also available in: Unified diff