Revision ea73ac07
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part3.R | ||
---|---|---|
173 | 173 |
year_predicted <- list_param_run_assessment_plotting$year_predicted |
174 | 174 |
|
175 | 175 |
NA_value <- NA_flag_val |
176 |
|
|
176 |
metric_name <- "rmse" #to be added to the code later... |
|
177 |
|
|
177 | 178 |
##################### START SCRIPT ################# |
178 | 179 |
|
179 | 180 |
####### PART 1: Read in data ######## |
... | ... | |
187 | 188 |
|
188 | 189 |
setwd(out_dir) |
189 | 190 |
|
190 |
list_outfiles <- vector("list", length=29) #collect names of output files, this should be dynamic?
|
|
191 |
list_outfiles_names <- vector("list", length=29) #collect names of output files
|
|
191 |
list_outfiles <- vector("list", length=31) #collect names of output files, this should be dynamic?
|
|
192 |
list_outfiles_names <- vector("list", length=31) #collect names of output files
|
|
192 | 193 |
counter_fig <- 0 #index of figure to collect outputs |
193 | 194 |
|
194 | 195 |
#i <- year_predicted |
... | ... | |
447 | 448 |
list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
448 | 449 |
} |
449 | 450 |
counter_fig <- counter_fig + length(model_name) |
450 |
|
|
451 |
r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
|
452 |
r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
|
453 |
r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
454 |
r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
455 |
|
|
451 | 456 |
################ |
452 | 457 |
### Figure 4: plot predicted tiff for specific date per model |
453 | 458 |
|
... | ... | |
516 | 521 |
} |
517 | 522 |
|
518 | 523 |
counter_fig <- counter_fig + length(model_name) |
524 |
|
|
525 |
r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
526 |
r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
519 | 527 |
|
520 | 528 |
###################### |
521 | 529 |
### Figure 6: plot map of average RMSE per tile at centroids |
... | ... | |
523 | 531 |
### Without |
524 | 532 |
|
525 | 533 |
#list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
526 |
list_df_ac_mod <- vector("list",length=2)
|
|
534 |
list_df_ac_mod <- vector("list",length=length(model_name))
|
|
527 | 535 |
|
528 | 536 |
for (i in 1:length(model_name)){ |
529 | 537 |
|
... | ... | |
557 | 565 |
list_outfiles[[counter_fig+i]] <- fig_filename |
558 | 566 |
} |
559 | 567 |
counter_fig <- counter_fig+length(model_name) |
568 |
|
|
569 |
r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
570 |
r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
560 | 571 |
|
561 | 572 |
|
562 | 573 |
###################### |
... | ... | |
587 | 598 |
#Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : |
588 | 599 |
#non-finite location and/or size for viewport |
589 | 600 |
|
590 |
j<-1 #for model name 1 |
|
601 |
j<-1 #for model name 1,mod1
|
|
591 | 602 |
for(i in 1:length(threshold_missing_day)){ |
592 | 603 |
|
593 | 604 |
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
... | ... | |
604 | 615 |
res_pix <- 960 |
605 | 616 |
col_mfrow <- 1 |
606 | 617 |
row_mfrow <- 1 |
618 |
#only mod1 right now |
|
607 | 619 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
608 | 620 |
"_",out_suffix,".png",sep=""), |
609 | 621 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
... | ... | |
623 | 635 |
list_outfiles[[counter_fig+i]] <- fig_filename |
624 | 636 |
} |
625 | 637 |
counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days... |
626 |
|
|
638 |
|
|
639 |
r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
640 |
r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
641 |
r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
642 |
r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
643 |
|
|
627 | 644 |
### Potential |
628 | 645 |
png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
629 | 646 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
... | ... | |
634 | 651 |
|
635 | 652 |
list_outfiles[[counter_fig+1]] <- paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
636 | 653 |
counter_fig <- counter_fig + 1 |
654 |
r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
637 | 655 |
|
638 | 656 |
table(tb$pred_mod) |
639 | 657 |
table(tb$index_d) |
... | ... | |
648 | 666 |
as.character(unique(test$tile_id)) #141 tiles |
649 | 667 |
|
650 | 668 |
dim(subset(test,test$predicted==365 & test$pred_mod=="mod1")) |
651 |
histogram(subset(test, test$pred_mod=="mod1")$predicted) |
|
669 |
#histogram(subset(test, test$pred_mod=="mod1")$predicted)
|
|
652 | 670 |
unique(subset(test, test$pred_mod=="mod1")$predicted) |
653 | 671 |
table((subset(test, test$pred_mod=="mod1")$predicted)) |
654 | 672 |
|
... | ... | |
661 | 679 |
|
662 | 680 |
list_outfiles[[counter_fig+1]] <- paste("Figure7c_histogram_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
663 | 681 |
counter_fig <- counter_fig + 1 |
682 |
r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
664 | 683 |
|
684 |
|
|
665 | 685 |
#table(tb) |
666 | 686 |
## Figure 7b |
667 | 687 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
... | ... | |
680 | 700 |
##### Figure 8: Breaking down accuracy by regions!! ##### |
681 | 701 |
|
682 | 702 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
703 |
|
|
704 |
################## |
|
683 | 705 |
##First plot with all models together |
684 | 706 |
|
685 | 707 |
## Figure 8a |
... | ... | |
687 | 709 |
col_mfrow <- 1 |
688 | 710 |
row_mfrow <- 1 |
689 | 711 |
|
690 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_","_",out_suffix,".png",sep=""), |
|
712 |
fig_filename <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep="") |
|
713 |
png(filename=fig_filename, |
|
691 | 714 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
692 | 715 |
|
693 | 716 |
p<- bwplot(rmse~pred_mod | reg, data=tb, |
... | ... | |
695 | 718 |
print(p) |
696 | 719 |
dev.off() |
697 | 720 |
|
698 |
list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
|
|
721 |
list_outfiles[[counter_fig+1]] <- fig_filename
|
|
699 | 722 |
counter_fig <- counter_fig + 1 |
700 | 723 |
|
701 | 724 |
## Figure 8b |
702 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_","_",out_suffix,".png",sep=""), |
|
725 |
fig_filename <- paste("Figure8b_boxplot_overall_separated_by_region_scaling_",out_suffix,".png",sep="") |
|
726 |
png(filename=fig_filename, |
|
703 | 727 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
704 | 728 |
|
705 | 729 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
... | ... | |
709 | 733 |
print(p) |
710 | 734 |
dev.off() |
711 | 735 |
|
712 |
list_outfiles[[counter_fig+1]] <- paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
|
|
736 |
list_outfiles[[counter_fig+1]] <- fig_filename
|
|
713 | 737 |
counter_fig <- counter_fig + 1 |
714 | 738 |
|
739 |
|
|
740 |
r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
741 |
r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
742 |
|
|
743 |
####### |
|
715 | 744 |
##Second, plot for each model separately |
716 | 745 |
|
717 | 746 |
for(i in 1:length(model_name)){ |
... | ... | |
723 | 752 |
col_mfrow <- 1 |
724 | 753 |
row_mfrow <- 1 |
725 | 754 |
|
726 |
fig_filename <- paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
|
|
755 |
fig_filename <- paste("Figure8c_boxplot_overall_accuracy_separated_by_region_with_outliers_",model_name[i],"_",out_suffix,".png",sep="")
|
|
727 | 756 |
png(filename=fig_filename, |
728 | 757 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
729 | 758 |
|
... | ... | |
736 | 765 |
counter_fig <- counter_fig + 1 |
737 | 766 |
|
738 | 767 |
## Figure 8d |
739 |
fig_filename <- paste("Figure8d_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
|
768 |
fig_filename <- paste("Figure8d_boxplot_overall_accuracy_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
|
|
740 | 769 |
png(filename=fig_filename, |
741 | 770 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
742 | 771 |
|
... | ... | |
751 | 780 |
counter_fig <- counter_fig + 1 |
752 | 781 |
|
753 | 782 |
} |
754 |
|
|
783 |
|
|
784 |
r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]]) |
|
785 |
r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]]) |
|
786 |
r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]]) |
|
787 |
r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]]) |
|
755 | 788 |
|
756 | 789 |
##################################################### |
757 | 790 |
#### Figure 9: plotting boxplot by year and regions ########### |
... | ... | |
761 | 794 |
col_mfrow <- 1 |
762 | 795 |
row_mfrow <- 1 |
763 | 796 |
|
764 |
png(filename=paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
797 |
png(filename=paste("Figure9a_boxplot_overall_separated_by_year_and_model_with_oultiers_",out_suffix,".png",sep=""),
|
|
765 | 798 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
766 | 799 |
#This will need to be changed, the layout is difficult at this stage |
767 | 800 |
#p<- bwplot(rmse~pred_mod + reg + year_predicted, data=tb, |
768 | 801 |
# main="RMSE per model and region over all tiles") |
769 |
p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,
|
|
802 |
p<- bwplot(rmse~pred_mod | year_predicted, data=tb, |
|
770 | 803 |
main="RMSE per model and region over all tiles") |
771 | 804 |
print(p) |
772 | 805 |
dev.off() |
773 | 806 |
|
774 | 807 |
## Figure 9b |
775 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_year_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
808 |
png(filename=paste("Figure9b_boxplot_overall_separated_by_year_and_model_scaling_",out_suffix,".png",sep=""),
|
|
776 | 809 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
777 | 810 |
|
778 | 811 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
779 | 812 |
#title("RMSE per model over all tiles") |
780 |
p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,ylim=c(0,5),
|
|
813 |
p<- bwplot(rmse~pred_mod | year_predicted, data=tb,ylim=c(0,5), |
|
781 | 814 |
main="RMSE per model and region over all tiles") |
782 | 815 |
print(p) |
783 | 816 |
dev.off() |
784 | 817 |
|
785 |
list_outfiles[[counter_fig+1]] <- paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="") |
|
786 |
counter_fig <- counter_fig + 1 |
|
818 |
for(i in 1:length(model_name)){ |
|
819 |
|
|
820 |
tb_subset <- subset(tb,pred_mod==model_name[i])#mod1 is i=1, mod_kr is last |
|
821 |
## Figure 9c |
|
822 |
fig_filename <- paste("Figure9c_boxplot_overall_accuracy_separated_by_year_with_outliers_",model_name[i],"_",out_suffix,".png",sep="") |
|
823 |
png(filename=fig_filename, |
|
824 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
825 |
|
|
826 |
boxplot(rmse~year_predicted,data=tb_subset,ylab=metric_name,xlab="year predicted")#,names=tb$pred_mod) |
|
827 |
title(paste("Overall accuracy for ", model_name[i], " by year for ",region_name,sep="")) |
|
828 |
|
|
829 |
#p<- bwplot(rmse~year_predicted | reg , data=tb_subset,ylim=c(0,5), |
|
830 |
#main="RMSE per model and region over all tiles") |
|
831 |
#print(p) |
|
832 |
dev.off() |
|
833 |
|
|
834 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
835 |
counter_fig <- counter_fig + 1 |
|
836 |
|
|
837 |
fig_filename <- paste("Figure9d_boxplot_overall_separated_by_year_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
|
838 |
png(filename=fig_filename, |
|
839 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
840 |
|
|
841 |
boxplot(rmse~year_predicted,data=tb_subset,ylim=c(0,5),outline=FALSE,ylab=metric_name,xlab="year predicted")#,names=tb$pred_mod) |
|
842 |
title(paste("Overall accuracy for ", model_name[i], " by year for ",region_name,sep="")) |
|
843 |
#p<- bwplot(rmse~year_predicted | reg , data=tb_subset,ylim=c(0,5), |
|
844 |
#main="RMSE per model and region over all tiles") |
|
845 |
#print(p) |
|
846 |
dev.off() |
|
847 |
|
|
848 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
849 |
counter_fig <- counter_fig + 1 |
|
850 |
} |
|
851 |
|
|
852 |
r26 <-c("figure 9a","Boxplot overall accuracy separated_by year and model with oultiers",NA,metric_name,region_name,year_predicted,list_outfiles[[22]]) |
|
853 |
r27 <-c("figure 9b","Boxplot overall accuracy separated_by year and model with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[23]]) |
|
854 |
r28 <-c("figure 9c","Boxplot overall accuracy separated by year with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[24]]) |
|
855 |
r29 <-c("figure 9d","Boxplot overall accuracy separated by year with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]]) |
|
856 |
r30 <-c("figure 9c","Boxplot overall accuracy separated by year with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[24]]) |
|
857 |
r31 <-c("figure 9d","Boxplot overall accuracy separated by year with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]]) |
|
787 | 858 |
|
788 | 859 |
############################################################## |
789 | 860 |
############## Prepare object to return |
790 | 861 |
############## Collect information from assessment ########## |
791 | 862 |
|
792 | 863 |
# This is hard coded and can be improved later on for flexibility. It works for now... |
793 |
comments_str <- c("tile processed for the region", |
|
794 |
"boxplot with outliers", |
|
795 |
"boxplot with outliers", |
|
796 |
"boxplot scaling by tiles", |
|
797 |
"boxplot scaling by tiles", |
|
798 |
"boxplot overall region with outliers", |
|
799 |
"boxplot overall region with scaling", |
|
800 |
"boxplot overall region with outliers", |
|
801 |
"boxplot overall region with scaling", |
|
802 |
"Barplot of accuracy metrics ranked by tile", |
|
803 |
"Barplot of accuracy metrics ranked by tile", |
|
804 |
"Average accuracy metrics map at centroids", |
|
805 |
"Average accuracy metrics map at centroids", |
|
806 |
"Number of missing day threshold1 map centroids", |
|
807 |
"Number of missing day threshold2 map centroids", |
|
808 |
"Number of missing day threshold3 map centroids", |
|
809 |
"Number of missing day threshold4 map centroids", |
|
810 |
"number_daily_predictions_per_model", |
|
811 |
"histogram number_daily_predictions_per_models", |
|
812 |
"boxplot overall separated by region with_outliers", |
|
813 |
"boxplot overall separated by region with_scaling", |
|
814 |
"boxplot overall separated by region with_outliers", |
|
815 |
"boxplot overall separated by region with_scaling") |
|
816 |
|
|
817 |
figure_no <- c("figure_1","figure_2a","figure_2a","figure_2b","figure_2b","figure_3a","figure_3a","figure_3b","figure_3b", |
|
818 |
"figure_5", "figure_5","figure_6","figure_6","Figure_7a","Figure_7a","Figure_7a","Figure_7a","Figure_7b", |
|
819 |
"Figure_7c","Figure 8a","Figure 8a","Figure 8b","Figure 8b") |
|
820 |
|
|
821 |
col_model_name <- c(NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_kr","mod1","mod_kr","mod1","mod_kr", |
|
822 |
"mod1","mod_kr","mod1","mod1","mod1","mod1","mod1","mod1",NA,NA,"mod1","mod1") |
|
823 |
col_reg <- rep(region_name,length(list_outfiles)) |
|
824 |
col_year_predicted <- rep(year_predicted,length(list_outfiles)) |
|
825 |
|
|
826 | 864 |
#This data.frame contains all the files from the assessment |
827 |
df_assessment_figures_files <- data.frame(figure_no=figure_no, |
|
828 |
comment = comments_str, |
|
829 |
model_name=col_model_name, |
|
830 |
reg=col_reg, |
|
831 |
year_predicted=col_year_predicted, |
|
832 |
filename=unlist(list_outfiles)) |
|
865 |
|
|
866 |
#Should have this at the location of the figures!!! will be done later? |
|
867 |
#r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) |
|
868 |
#r2 <-c("figure_2a","Boxplot of accuracy with outliers by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[2]]) |
|
869 |
#r3 <-c("figure_2a","boxplot of accuracy with outliers by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[3]]) |
|
870 |
#r4 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[4]]) |
|
871 |
#r5 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[5]]) |
|
872 |
#r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
|
873 |
#r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
|
874 |
#r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
875 |
#r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
876 |
#r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[10]]) |
|
877 |
#r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[11]]) |
|
878 |
#r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[12]]) |
|
879 |
#r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[13]]) |
|
880 |
#r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[14]]) |
|
881 |
#r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[15]]) |
|
882 |
#r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[16]]) |
|
883 |
#r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[17]]) |
|
884 |
#r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]]) |
|
885 |
#r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]]) |
|
886 |
#r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
887 |
#r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
888 |
#r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]]) |
|
889 |
#r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]]) |
|
890 |
#r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]]) |
|
891 |
#r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]]) |
|
892 |
|
|
893 |
#Assemble all the figures description and information in a data.frame for later use |
|
894 |
list_rows <-list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24, |
|
895 |
r25,r26,r27,r28,r29,r30,r31) |
|
896 |
df_assessment_figures_files <- as.data.frame(do.call(rbind,list_rows)) |
|
897 |
names(df_assessment_figures_files) <- c("figure_no","comment","model_name","reg","metric_name","year_predicted","filename") |
|
833 | 898 |
|
834 | 899 |
###Prepare files for copying back? |
835 | 900 |
df_assessment_figures_files_names <- file.path(out_dir,paste("df_assessment_figures_files_",region_name,"_",year_predicted,"_",out_suffix,".txt",sep="")) |
Also available in: Unified diff
assessment part3, tracking figures and listing in table