Revision eda4f37a
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/queue/IBS2013_figures_and_analyses_poster.R | ||
---|---|---|
1 |
######################################## IBS 2013 POSTER ####################################### |
|
2 |
############################ Scripts for figures and analyses for the the IBS poster ##################################### |
|
3 |
#This script creates the figures used in the IBS 2013 poster. |
|
4 |
#It uses inputs from interpolation objects created at earlier stages... # |
|
5 |
#AUTHOR: Benoit Parmentier # |
|
6 |
#DATE: 12/27/2012 # |
|
7 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#491-- # |
|
8 |
################################################################################################### |
|
9 |
|
|
10 |
###Loading R library and packages |
|
11 |
#library(gtools) # loading some useful tools |
|
12 |
library(mgcv) # GAM package by Wood 2006 (version 2012) |
|
13 |
library(sp) # Spatial pacakge with class definition by Bivand et al. 2008 |
|
14 |
library(spdep) # Spatial package with methods and spatial stat. by Bivand et al. 2012 |
|
15 |
library(rgdal) # GDAL wrapper for R, spatial utilities (Keitt et al. 2012) |
|
16 |
library(gstat) # Kriging and co-kriging by Pebesma et al. 2004 |
|
17 |
library(automap) # Automated Kriging based on gstat module by Hiemstra et al. 2008 |
|
18 |
library(spgwr) |
|
19 |
library(maptools) |
|
20 |
library(graphics) |
|
21 |
library(parallel) # Urbanek S. and Ripley B., package for multi cores & parralel processing |
|
22 |
library(raster) |
|
23 |
library(rasterVis) |
|
24 |
library(plotrix) # Draw circle on graph and additional plotting options |
|
25 |
library(reshape) # Data format and type transformation |
|
26 |
## Functions |
|
27 |
#loading R objects that might have similar names |
|
28 |
load_obj <- function(f) |
|
29 |
{ |
|
30 |
env <- new.env() |
|
31 |
nm <- load(f, env)[1] |
|
32 |
env[[nm]] |
|
33 |
} |
|
34 |
|
|
35 |
###Parameters and arguments |
|
36 |
|
|
37 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
|
38 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
39 |
infile2<-"list_365_dates_04212012.txt" #list of dates |
|
40 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
|
41 |
#infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
|
42 |
infile5<-"mean_day244_rescaled.rst" #mean LST for day 244 |
|
43 |
inlistf<-"list_files_05032012.txt" #list of raster images containing the Covariates |
|
44 |
infile6<-"OR83M_state_outline.shp" |
|
45 |
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
46 |
|
|
47 |
obj_list<-"list_obj_12272012.txt" #Results of fusion from the run on ATLAS |
|
48 |
#obj_list<-"list_obj_08262012.txt" #Results of fusion from the run on ATLAS |
|
49 |
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging #Jupiter Location on XANDERS |
|
50 |
setwd(path) |
|
51 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
52 |
#Number of kriging model |
|
53 |
out_prefix<-"methods_comp_12272012_" #User defined output prefix |
|
54 |
|
|
55 |
filename<-sub(".shp","",infile1) #Removing the extension from file. |
|
56 |
ghcn<-readOGR(".", filename) #reading shapefile |
|
57 |
|
|
58 |
### PREPARING RASTER COVARIATES STACK ####### |
|
59 |
|
|
60 |
#CRS<-proj4string(ghcn) #Storing projection information (ellipsoid, datum,etc.) |
|
61 |
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="") #Column 1 contains the names of raster files |
|
62 |
inlistvar<-lines[,1] #column 3 the list of models to use...? |
|
63 |
|
|
64 |
inlistvar<-paste(path,"/",as.character(inlistvar),sep="") |
|
65 |
covar_names<-as.character(lines[,2]) #Column two contains short names for covaraites |
|
66 |
|
|
67 |
s_raster<- stack(inlistvar) #Creating a stack of raster images from the list of variables. |
|
68 |
layerNames(s_raster)<-covar_names #Assigning names to the raster layers |
|
69 |
projection(s_raster)<-proj_str |
|
70 |
|
|
71 |
#Create mask |
|
72 |
pos<-match("LC10",layerNames(s_raster)) |
|
73 |
LC10<-subset(s_raster,pos) |
|
74 |
LC10[is.na(LC10)]<-0 #Since NA values are 0, we assign all zero to NA |
|
75 |
mask_land<-LC10<100 |
|
76 |
mask_land_NA<-mask_land |
|
77 |
mask_land_NA[mask_land_NA==0]<-NA |
|
78 |
|
|
79 |
data_name<-"mask_land_OR" |
|
80 |
raster_name<-paste(data_name,".rst", sep="") |
|
81 |
writeRaster(mask_land, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
82 |
#writeRaster(r2, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
83 |
|
|
84 |
pos<-match("ELEV_SRTM",layerNames(s_raster)) |
|
85 |
ELEV_SRTM<-raster(s_raster,pos) |
|
86 |
elev<-ELEV_SRTM |
|
87 |
elev[-0.050<elev]<-NA #Remove all negative elevation lower than 50 meters... |
|
88 |
|
|
89 |
mask_elev_NA<-elev |
|
90 |
|
|
91 |
pos<-match("mm_01",layerNames(s_raster)) |
|
92 |
mm_01<-subset(s_raster,pos) |
|
93 |
mm_01<-mm_01-273.15 |
|
94 |
mm_01<-mask(mm_01,mask_land_NA) |
|
95 |
#mention this is the last... files |
|
96 |
|
|
97 |
##################### METHODS COMPARISON ########################### |
|
98 |
|
|
99 |
###################################################################### |
|
100 |
# PART 1 : USING ACCURACY METRICS FOR FIVE METHODS COMPARISON |
|
101 |
# Boxplots and histograms |
|
102 |
#start function here... |
|
103 |
|
|
104 |
lines<-read.table(paste(path,"/",obj_list,sep=""), sep=",") #Column 1 contains the names RData objects |
|
105 |
inlistobj<-lines[,1] |
|
106 |
tinlistobj<-paste(path,"/",as.character(inlistobj),sep="") |
|
107 |
obj_names<-as.character(lines[,2]) #Column two contains short names for obj. model |
|
108 |
|
|
109 |
tb_metrics_fun<-function(list_obj,path_data,names_obj){ |
|
110 |
nel<-length(inlistobj) |
|
111 |
#method_mod <-vector("list",nel) #list of one row data.frame |
|
112 |
method_tb <-vector("list",nel) #list of one row data.frame |
|
113 |
for (k in 1:length(inlistobj)){ |
|
114 |
#obj_tmp<-load_obj(as.character(inlistobj[i])) |
|
115 |
#method_mod[[i]]<-obj_tmp |
|
116 |
#names(method_mod[[i]])<-obj_names[i] |
|
117 |
mod_tmp<-load_obj(as.character(inlistobj[k])) |
|
118 |
tb<-mod_tmp[[1]][[3]][0,] #copy of the data.frame structure that holds the acuary metrics |
|
119 |
#mod_tmp<-method_mod[[k]] |
|
120 |
for (i in 1:365){ # Assuming 365 days of prediction |
|
121 |
tmp<-mod_tmp[[i]][[3]] |
|
122 |
tb<-rbind(tb,tmp) |
|
123 |
} |
|
124 |
rm(mod_tmp) |
|
125 |
for(i in 4:(ncol(tb))){ # start of the for loop #1 |
|
126 |
tb[,i]<-as.numeric(as.character(tb[,i])) |
|
127 |
} |
|
128 |
method_tb[[k]]<-tb |
|
129 |
} |
|
130 |
names(method_tb)<-names_obj |
|
131 |
return(method_tb) |
|
132 |
} |
|
133 |
|
|
134 |
tmp44<-tb_metrics_fun(as.character(inlistobj),path,obj_names) |
|
135 |
#Condensed, and added other comparison, monthly comparison...:ok |
|
136 |
|
|
137 |
plot_model_boxplot_combined_fun<-function(tb_list,path_data,obj_names,mod_selected,out_prefix,layout_m){ |
|
138 |
|
|
139 |
method_stat<-vector("list",length(obj_names)) #This contains summary information based on accuracy metrics (MAE,RMSE) |
|
140 |
names_method<-obj_names |
|
141 |
metrics<-c("MAE","RMSE") |
|
142 |
tb_metric_list<-vector("list",length(metrics)) |
|
143 |
tb_metric_list_na<-vector("list",length(metrics)) |
|
144 |
mean_list<-vector("list",length(metrics)) |
|
145 |
sd_list<-vector("list",length(metrics)) |
|
146 |
na_mod_list<-vector("list",length(metrics)) |
|
147 |
|
|
148 |
for(i in 1:length(metrics)){ # Reorganizing information in terms of metrics |
|
149 |
#for(k in 1:length(tb_list)){ # start of the for main loop to all methods |
|
150 |
#tb<-tb_list[[k]] |
|
151 |
#metrics<-as.character(unique(tb$metric)) #Name of accuracy metrics (RMSE,MAE etc.) |
|
152 |
metric_name<-paste("tb_t_",metrics[i],sep="") |
|
153 |
png(paste("boxplot",metric_name,out_prefix,"_combined.png", sep="_"),height=480*layout_m[1],width=480*layout_m[2]) |
|
154 |
par(mfrow=layout_m) |
|
155 |
for(k in 1:length(tb_list)){ # start of the for main loop to all methods |
|
156 |
#}#for(i in 1:length(metrics)){ # Reorganizing information in terms of metrics |
|
157 |
tb<-tb_list[[k]] |
|
158 |
#metric_name<-paste("tb_t_",metrics[i],sep="") |
|
159 |
tb_metric<-subset(tb, metric==metrics[i]) |
|
160 |
assign(metric_name,tb_metric) |
|
161 |
tb_metric_list[[i]]<-tb_metric |
|
162 |
tb_processed<-tb_metric |
|
163 |
mod_pat<-glob2rx("mod*") |
|
164 |
var_pat<-grep(mod_pat,names(tb_processed),value=FALSE) # using grep with "value" extracts the matching names |
|
165 |
#mod_pat<-mod_selected |
|
166 |
#var_pat<-grep(mod_pat,names(tb_processed),value=FALSE) # using grep with "value" extracts the matching names |
|
167 |
na_mod<-colSums(!is.na(tb_processed[,var_pat])) |
|
168 |
for (j in 1:length(na_mod)){ |
|
169 |
if (na_mod[j]<183){ |
|
170 |
tmp_name<-names(na_mod)[j] |
|
171 |
pos<-match(tmp_name,names(tb_processed)) |
|
172 |
tb_processed<-tb_processed[,-pos] #Remove columns that have too many missing values!!! |
|
173 |
} |
|
174 |
} |
|
175 |
tb_metric_list_na[[i]]<-tb_processed |
|
176 |
mod_pat<-glob2rx("mod*") |
|
177 |
var_pat<-grep(mod_pat,names(tb_processed),value=FALSE) |
|
178 |
#Plotting box plots |
|
179 |
|
|
180 |
#png(paste("boxplot",metric_name,names_methods[k],out_prefix,".png", sep="_")) |
|
181 |
boxplot(tb_processed[,var_pat],main=names_methods[k], ylim=c(1,5), |
|
182 |
ylab= metrics[i], outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
183 |
|
|
184 |
#Add assessment of missing prediction over the year. |
|
185 |
mean_metric<-sapply(tb_processed[,var_pat],mean,na.rm=T) |
|
186 |
sd_metric<-sapply(tb_processed[,var_pat],sd,na.rm=T) |
|
187 |
mean_list[[i]]<-mean_metric |
|
188 |
sd_list[[i]]<-sd_metric |
|
189 |
na_mod_list[[i]]<-na_mod_list |
|
190 |
#Now calculate monthly averages and overall averages over full year |
|
191 |
method_stat<-list(mean_list,sd_list,na_mod_list) |
|
192 |
method_stat[[k]]<-list(mean_list,sd_list,na_mod_list) |
|
193 |
names(method_stat[[k]])<-c("mean_metrics","sd_metrics","na_metrics") |
|
194 |
names(mean_list)<-metrics |
|
195 |
method_mean[[k]]<-mean_list |
|
196 |
names_methods<-obj_names |
|
197 |
#names(method_stat)<-obj_names |
|
198 |
} |
|
199 |
dev.off() #Close file where figures are drawn |
|
200 |
} |
|
201 |
return(method_stat) |
|
202 |
} |
|
203 |
|
|
204 |
tb_list<-tmp44 |
|
205 |
mod_selected<-"" |
|
206 |
layout_plot<-c(1,5) |
|
207 |
mean_methods<-plot_model_boxplot_fun(tb_list,path,obj_names,mod_selected,out_prefix) |
|
208 |
mean_methods_2<-plot_model_boxplot_combined_fun(tb_list,path,obj_names,mod_selected,out_prefix,layout_m=layout_plot) |
|
209 |
|
|
210 |
##################### PART II ####################### |
|
211 |
|
|
212 |
##PLOTTING OF ONE DATE TO COMPARE METHODS!!! |
|
213 |
|
|
214 |
lf_raster_fus<-"_365d_GAM_fusion_all_lstd_12272012.rst" |
|
215 |
lf_raster_cai<-"_365d_GAM_CAI4_all_12272012.rst" |
|
216 |
date_selected<-"20100103" |
|
217 |
titles<-list(cai=c("cai mod1","cai mod4","cai mod7"), |
|
218 |
fusion=c("fusion mod1"," fusion mod4"," fusion mod7")) |
|
219 |
|
|
220 |
mask_rast<-mask_elev_NA |
|
221 |
mod_selected1<-c(1,4,7) |
|
222 |
mod_selected2<-c(1,4,7) |
|
223 |
#lf_raster_fus<-file_pat1 |
|
224 |
#lf_raster_cai<-file_pat2 |
|
225 |
file_pat1<-glob2rx(paste("*tmax_predicted*",date_selected,"*",lf_raster_cai,sep="")) #Search for files in relation to fusion |
|
226 |
#lf_cai<-list.files(pattern=file_pat) #Search for files in relation to fusion |
|
227 |
file_pat2<-glob2rx(paste("*tmax_predicted*",date_selected,"*",lf_raster_fus,sep="")) #Search for files in relation to fusion |
|
228 |
#lf_fus<-list.files(pattern=file_pat) #Search for files in relation to fusion |
|
229 |
layout_plot<-c(2,3) |
|
230 |
raster_plots_interpolation_fun<-function(file_pat1,file_pat2,mod_selected1,mod_selected2,titles,mask_rast, |
|
231 |
layout_m,out_suffix){ |
|
232 |
layout_m<-layout_plot |
|
233 |
lf_cai<-list.files(pattern=file_pat1) #Search for files in relation to fusion |
|
234 |
lf_fus<-list.files(pattern=file_pat2) #Search for files in relation to fusion |
|
235 |
|
|
236 |
r1<-stack(lf_cai[mod_selected1]) #CAI |
|
237 |
r2<-stack(lf_fus[mod_selected2])#FUS |
|
238 |
predictions<-stack(r1,r2) |
|
239 |
predictions<-mask(predictions,mask_rast) |
|
240 |
layerNames(predictions)<-unlist(titles) |
|
241 |
|
|
242 |
s.range <- c(min(minValue(predictions)), max(maxValue(predictions))) |
|
243 |
col.breaks <- pretty(s.range, n=50) |
|
244 |
lab.breaks <- pretty(s.range, n=5) |
|
245 |
temp.colors <- colorRampPalette(c('blue', 'white', 'red')) |
|
246 |
X11(height=6,width=12) |
|
247 |
#plot(predictions, breaks=col.breaks, col=rev(heat.colors(length(col.breaks)-1)), |
|
248 |
# axis=list(at=lab.breaks, labels=lab.breaks)) |
|
249 |
plot(predictions, breaks=col.breaks, col=temp.colors(length(col.breaks)-1), |
|
250 |
axis=list(at=lab.breaks, labels=lab.breaks)) |
|
251 |
#plot(reg_outline, add=TRUE) |
|
252 |
savePlot(paste("comparison_one_date_CAI_fusion_tmax_prediction_",date_selected,out_prefix,".png", sep=""),type="png") |
|
253 |
#png(paste("boxplot",metric_name,out_prefix,"_combined.png", sep="_"),height=480*layout_m[1],width=480*layout_m[2]) |
|
254 |
#par(mfrow=layout_m) |
|
255 |
png(paste("comparison_one_date_CAI_fusion_tmax_prediction_levelplot_",date_selected,out_prefix,".png", sep=""), |
|
256 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
257 |
levelplot(predictions,main="comparison", ylab=NULL,xlab=NULL,par.settings = list(axis.text = list(font = 2, cex = 1.5), |
|
258 |
par.main.text=list(font=2,cex=2),strip.background=list(col="white")),par.strip.text=list(font=2,cex=1.5), |
|
259 |
#col.regions=temp.colors,at=seq(-1,1,by=0.02)) |
|
260 |
col.regions=temp.colors(25)) |
|
261 |
dev.off() |
|
262 |
#savePlot(paste("comparison_one_date_CAI_fusion_tmax_prediction_levelplot_",date_selected,out_prefix,".png", sep=""),type="png") |
|
263 |
} |
|
264 |
|
|
265 |
raster_plots_interpolation_fun(file_pat1,file_pat2, |
|
266 |
mod_selected1,mod_selected2,titles,mask_rast,layout_plot,out_prefix) |
|
267 |
|
|
268 |
|
|
269 |
#### FIGURE 3: Transect map |
|
270 |
|
|
271 |
### FIGURE 4: transect plot |
|
272 |
|
|
273 |
|
|
274 |
|
|
275 |
#### END OF THE SCRIPT ######### |
|
276 |
|
|
277 |
|
|
278 |
#This can be entered as textfile or option later...ok for running now on 12/07/2012 |
|
279 |
|
|
280 |
|
|
281 |
#Figure 1: Boxplots for all methods and models... |
Also available in: Unified diff
IBS conference, code used to create figures initial commit