Revision efcab48e
Added by Benoit Parmentier over 8 years ago
climate/research/oregon/interpolation/global_product_assessment_part1.R | ||
---|---|---|
593 | 593 |
i<-1 |
594 | 594 |
|
595 | 595 |
#Product assessment |
596 |
function_product_assessment_part1_functions <- "global_product_assessment_part1_functions_09192016b.R" |
|
597 |
source(file.path(script_path,function_product_assessment_part1_functions)) #source all functions used in this script |
|
598 |
#undebug(combine_measurements_and_predictions_df) |
|
596 | 599 |
out_suffix_str <- paste0(region_name,"_",out_suffix) |
597 | 600 |
#this can be run with mclapply, very fast right now: |
598 | 601 |
station_summary_obj <- combine_measurements_and_predictions_df(i=i, |
... | ... | |
625 | 628 |
id_name <- list_selected_ID[i] |
626 | 629 |
station_id <- id_name |
627 | 630 |
#> myDF[ is.na(myDF) ] <- NA |
628 |
#var_name1 <- "mod1_mosaic" |
|
629 |
var_name1 <- y_var_name |
|
630 |
var_name2 <- "mod1_mosaic" |
|
631 |
out_suffix_str <- paste(region_name,out_suffix,sep="_") |
|
632 |
function_product_assessment_part1_functions <- "global_product_assessment_part1_functions_09192016d.R" |
|
633 |
source(file.path(script_path,function_product_assessment_part1_functions)) #source all functions used in this script |
|
634 | 631 |
|
635 |
debug(plot_observation_predictions_time_series) |
|
636 |
test_plot <- plot_observation_predictions_time_series(df_pix_time_series=df_pix_ts, |
|
637 |
var_name1=var_name1, |
|
638 |
var_name2=var_name2, |
|
639 |
station_id=id_name, |
|
640 |
scaling=scaling, |
|
641 |
out_dir=".", |
|
642 |
out_suffix="") |
|
632 |
df_pix_ts[is.na(df_pix_ts)] <- NA |
|
633 |
if(!is.null(scaling)){ |
|
634 |
df_pix_ts[[var_pred_mosaic]] <- df_pix_ts[[var_pred_mosaic]]*scaling |
|
635 |
} |
|
636 |
|
|
637 |
d_z_var <- zoo(as.numeric(df_pix_ts[[var_pred_mosaic]]),as.Date(df_pix_ts$date)) #make sure date is a date object !!! |
|
638 |
names(d_z_var) <- var_pred_mosaic |
|
639 |
plot(d_z_var) |
|
640 |
d_z_obs <- zoo(as.numeric(df_pix_ts[[y_var_name]]),as.Date(df_pix_ts$date)) |
|
641 |
plot(d_z_obs) |
|
642 |
|
|
643 |
d_z_res <- zoo(as.numeric(df_pix_ts[[paste0("res_",var_pred_mosaic)]]),as.Date(df_pix_ts$date)) |
|
644 |
plot(d_z_res) |
|
645 |
|
|
646 |
d_z <- merge(d_z_var,d_z_obs) |
|
647 |
range(d_z_res,na.rm=T) |
|
648 |
mean(d_z_res,na.rm=T) |
|
649 |
quantile(d_z_res,na.rm=T) |
|
650 |
plot(d_z,plot.type="single",col=c("blue","red")) |
|
651 |
names(d_z) <- c("pred","obs") |
|
652 |
|
|
653 |
#day_start <- "1984-01-01" #PARAM 12 arg 12 |
|
654 |
#day_end <- "2014-12-31" #PARAM 13 arg 13 |
|
655 |
#start_date <- as.Date(day_start) |
|
656 |
#end_date <- as.Date(day_end) |
|
657 |
#start_year <- year(start_date) |
|
658 |
#end_year <- year(end_date) |
|
659 |
range_year <- range(df_pix_ts$year) |
|
660 |
start_year <- range_year[1] |
|
661 |
end_year <- range_year[2] |
|
662 |
var="tmax" |
|
663 |
|
|
664 |
res_pix <- 1000 |
|
665 |
#res_pix <- 480 |
|
666 |
col_mfrow <- 2 |
|
667 |
row_mfrow <- 1 |
|
668 |
|
|
669 |
png_filename <- file.path(out_dir,paste("Figure5a_time_series_profile_",region_name,"_",id_name,y_var_name,out_suffix,".png",sep ="")) |
|
670 |
title_str <- paste("Predicted daily ", station_id," ",var," for the ", start_year,"-",end_year," time period",sep="") |
|
671 |
|
|
672 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
673 |
#this is the whole time series |
|
674 |
#plot(d_z_var,ylab="tmax in deg C",xlab="Daily time steps", |
|
675 |
# main=title_str,cex=3,font=2, |
|
676 |
# cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
677 |
# lty=3) |
|
678 |
#range(df_pix_ts[[var_pred_mosaic]],na.rm=T) |
|
679 |
|
|
680 |
plot(df_pix_ts[[var_pred_mosaic]] ~ as.Date(df_pix_ts$date),ylab="tmax in deg C",xlab="Daily time steps", |
|
681 |
main=title_str,cex=1,font=2,type="l", |
|
682 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
683 |
lty=3) |
|
684 |
lines(as.numeric(df_pix_ts[[y_var_name]]) ~ as.Date(df_pix_ts$date),ylab="tmax in deg C",xlab="Daily time steps", |
|
685 |
main=title_str,cex=1,font=2,col="red",type="l", |
|
686 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
687 |
lty=3) |
|
688 |
|
|
689 |
|
|
690 |
dev.off() |
|
691 |
|
|
692 |
### get smaller window |
|
693 |
day_start <- "1994-01-01" #PARAM 12 arg 12 |
|
694 |
day_end <- "1999-12-31" #PARAM 13 arg 13 |
|
695 |
|
|
696 |
start_date <- as.Date(day_start) |
|
697 |
end_date <- as.Date(day_end) |
|
698 |
start_year <- year(start_date) |
|
699 |
end_year <- year(end_date) |
|
700 |
d_z_tmp <- d_z_var |
|
701 |
d_z <- window(d_z_tmp,start=start_date,end=end_date) |
|
702 |
names(d_z) <- var_pred_mosaic |
|
703 |
df_var <- as.data.frame(d_z) |
|
704 |
|
|
705 |
d_z_tmp <- d_z_obs |
|
706 |
d_z_tmp <- d_z |
|
707 |
d_z_tmp <- window(d_z_tmp,start=start_date,end=end_date) |
|
708 |
plot(d_z_tmp,col=c("blue","red"),plot.type="single") |
|
709 |
df_z <- as.data.frame(d_z) |
|
710 |
|
|
711 |
names(d_z) <- y_var_name |
|
712 |
df_obs <- as.data.frame(d_z) |
|
713 |
names(d_z) <- y_var_name |
|
714 |
|
|
715 |
if(!is.null(df_selected2)){ |
|
716 |
d_z2 <- window(d_z_tmp2,start=start_date,end=end_date) |
|
717 |
} |
|
718 |
|
|
719 |
res_pix <- 1000 |
|
720 |
#res_pix <- 480 |
|
721 |
col_mfrow <- 2 |
|
722 |
row_mfrow <- 1 |
|
723 |
|
|
724 |
png_filename <- file.path(out_dir,paste("Figure5b_time_series_profile_",region_name,"_",out_suffix,".png",sep ="")) |
|
725 |
title_str <- paste("Predicted daily ", station_id," ",var," for the ", start_year,"-",end_year," time period",sep="") |
|
726 |
|
|
727 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
728 |
|
|
729 |
plot(df_pix_ts[[var_pred_mosaic]] ~ as.Date(df_pix_ts$date),ylab="tmax in deg C",xlab="Daily time steps", |
|
730 |
main=title_str,cex=1,font=2,type="l", |
|
731 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
732 |
lty=3) |
|
733 |
lines(as.numeric(df_pix_ts[[y_var_name]]) ~ as.Date(df_pix_ts$date),ylab="tmax in deg C",xlab="Daily time steps", |
|
734 |
main=title_str,cex=1,font=2,col="red",type="l", |
|
735 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
736 |
lty=3) |
|
737 |
|
|
738 |
dev.off() |
|
739 |
|
|
740 |
#### Subset for 5c: zoom in |
|
741 |
|
|
742 |
day_start <- "1991-01-01" #PARAM 12 arg 12 |
|
743 |
day_end <- "1992-12-31" #PARAM 13 arg 13 |
|
744 |
|
|
745 |
start_date <- as.Date(day_start) |
|
746 |
end_date <- as.Date(day_end) |
|
747 |
start_year <- year(start_date) |
|
748 |
end_year <- year(end_date) |
|
749 |
d_z <- window(d_z_tmp,start=start_date,end=end_date) |
|
750 |
if(!is.null(df_selected2)){ |
|
751 |
d_z2 <- window(d_z_tmp2,start=start_date,end=end_date) |
|
752 |
} |
|
753 |
|
|
754 |
res_pix <- 1000 |
|
755 |
#res_pix <- 480 |
|
756 |
col_mfrow <- 2 |
|
757 |
row_mfrow <- 1 |
|
758 |
|
|
759 |
png_filename <- file.path(out_dir,paste("Figure5c_subset_time_series_profile_",region_name,"_",out_suffix,".png",sep ="")) |
|
760 |
title_str <- paste("Predicted daily ", station_id," ",var," for the ", start_year,"-",end_year," time period",sep="") |
|
761 |
|
|
762 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
763 |
|
|
764 |
plot(d_z,ylab="tmax in deg C",xlab="Daily time steps", |
|
765 |
main=title_str,cex=3,font=2, |
|
766 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
767 |
lty=3) |
|
768 |
if(!is.null(df_selected2)){ |
|
769 |
lines(d_z2,ylab="tmax in deg C",xlab="Daily time steps", |
|
770 |
main=title_str,cex=3,font=2, |
|
771 |
col="red", |
|
772 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
773 |
lty=3) |
|
774 |
} |
|
643 | 775 |
|
776 |
dev.off() |
|
644 | 777 |
|
645 | 778 |
############### PART5: Make raster stack and display maps ############# |
646 | 779 |
#### Extract corresponding raster for given dates and plot stations used |
Also available in: Unified diff
modifying time series ploting function with additional option