Project

General

Profile

« Previous | Next » 

Revision f101c997

Added by Benoit Parmentier over 8 years ago

running combining function and time series plotting for 11 selected stations for env layers meeting

View differences:

climate/research/oregon/interpolation/global_product_assessment_part1.R
376 376
c(  -115.330122,36.677139),
377 377
c( -78.396011,35.696143)) 
378 378

  
379

  
380 379
test_day_query2 <- lapply(list_lat_long,FUN=query_for_station_lat_long,df_points_spdf=df_point_day,step_x=1,step_y=1)
381 380
#test_day_query <-query_for_station_lat_long(c(-72,42),df_points_spdf=df_point_day,step_x=1,step_y=0.25)
382 381
df_stations_selected <- do.call(rbind,test_day_query2)
383 382
proj4string(df_stations_selected) <- proj_str
384 383
#debug(query_for_station_lat_long)
385 384

  
385
df_stations_locations <- do.call(rbind,list_lat_long) #these are the stations to match 
386
##layer to be clipped
387
if(class(countries_shp)!="SpatialPolygonsDataFrame"){
388
    reg_layer <- readOGR(dsn=dirname(countries_shp),sub(".shp","",basename(countries_shp)))
389
}else{
390
    reg_layer <- countries_shp
391
}
392
df_stations_selected$lab_id <- 1:nrow(df_stations_selected)
393
#now clip  
394
#use points that were used to extract
395
reg_layer_clipped <- gClip(shp=reg_layer, bb=df_points , keep.attribs=TRUE,outDir=NULL,outSuffix=NULL)
396

  
397
plot(reg_layer_clipped)
398
plot(df_stations_selected,add=T,col="blue",cex=2)
399
text(df_stations_selected$x,df_stations_selected$y, df_stations_selected$id, col="red", cex=0.8)
400

  
386 401
##Next use the day results and select a mean station, quartile and min and max?
387 402

  
388 403
#list_id_data_v <- unique(data_stations_var_pred_data_v$id)
......
595 610
#Product assessment
596 611
out_suffix_str <- paste0(region_name,"_",out_suffix)
597 612
#this can be run with mclapply, very fast right now:
598
station_summary_obj <- combine_measurements_and_predictions_df(i=i,
613
#station_summary_obj <- combine_measurements_and_predictions_df(i=i,
614
#                                        df_raster=df_raster,
615
#                                        df_time_series=df_time_series,
616
#                                        df_ts_pix=df_ts_pix,
617
#                                        data_var=data_var,
618
#                                        list_selected_ID=list_selected_ID,
619
#                                        r_ts_name=r_ts_name,
620
#                                        var_name=var_name,
621
#                                        var_pred = var_pred,
622
#                                        out_dir =out_dir,
623
#                                        out_suffix=out_suffix_str,
624
#                                        plot_fig=F)
625
df_pix_ts <- station_summary_obj$df_pix_ts
626

  
627
#####
628
##combine information for the 11 selected stations
629

  
630
list_station_summary_obj <- mclapply(1:length(list_selected_ID),
631
                                        FUN=combine_measurements_and_predictions_df,
599 632
                                        df_raster=df_raster,
600 633
                                        df_time_series=df_time_series,
601 634
                                        df_ts_pix=df_ts_pix,
......
606 639
                                        var_pred = var_pred,
607 640
                                        out_dir =out_dir,
608 641
                                        out_suffix=out_suffix_str,
609
                                        plot_fig=F)
610
df_pix_ts <- station_summary_obj$df_pix_ts
642
                                        plot_fig=F,
643
                                        mc.preschedule=FALSE,
644
                                        mc.cores = num_cores)
645

  
611 646
#station_summary_obj <- list(nb_zero,nb_NA, df_pix_ts)
612 647

  
613 648
#id_name <- list_selected_ID[i]
......
627 662
var_name1 <- y_var_name
628 663
var_name2 <- "mod1_mosaic"
629 664
out_suffix_str <- paste(region_name,out_suffix,sep="_")
630
scaling_factors <- c("NA",scaling) #no scaling for y_var_name but scaling for var_name2
665
scaling_factors <- c(NA,scaling) #no scaling for y_var_name but scaling for var_name2
631 666
list_windows <- list(c("1999-01-01","1999-12-31"))
632 667

  
633
function_product_assessment_part1_functions <- "global_product_assessment_part1_functions_09202016.R"
668
function_product_assessment_part1_functions <- "global_product_assessment_part1_functions_09202016b.R"
634 669
source(file.path(script_path,function_product_assessment_part1_functions)) #source all functions used in this script 
635 670

  
636 671
###TO DO:
......
638 673
#2) Compute temporal autocorrelation by station and profile
639 674
#3) compute range, min, max etc by stations
640 675

  
641
undebug(plot_observation_predictions_time_series)
676
#undebug(plot_observation_predictions_time_series)
642 677
#test_plot <- plot_observation_predictions_time_series(df_pix_time_series=df_pix_ts,
643 678
#                                                      var_name1=var_name1,
644 679
#                                                      var_name2=var_name2,
......
649 684
#                                                      out_suffix=out_suffix_str)
650 685
out_suffix_str2 <- paste(region_name,out_suffix,"test",sep="_")
651 686

  
652
test_plot <- plot_observation_predictions_time_series(df_pix_time_series=df_pix_ts,
653
                                                      var_name1=var_name1,
654
                                                      var_name2=var_name2,
655
                                                      list_windows=list_windows,
656
                                                      time_series_id=id_name,
657
                                                      scaling_factors=NULL,
658
                                                      out_dir=out_dir,
659
                                                      out_suffix=out_suffix_str2)
687
#list_df_pix_ts <-extract_from_list_obj(list_station_summary_obj,"df_pix_ts")
688
list_df_pix_ts <- lapply(1:length(list_station_summary_obj),FUN=function(i){list_station_summary_obj[[i]]$df_pix_ts})
689

  
690
debug(plot_observation_predictions_time_series)
691
test_plot <- mclapply(list_df_pix_ts,
692
                      FUN=plot_observation_predictions_time_series,
693
                      var_name1=var_name1,
694
                      var_name2=var_name2,
695
                      list_windows=list_windows,
696
                      time_series_id=NULL,#read in from data
697
                      scaling_factors=scaling_factors,
698
                      out_dir=out_dir,
699
                      out_suffix=out_suffix_str2,
700
                      mc.preschedule=FALSE,
701
                      mc.cores = num_cores)
660 702

  
661 703
############### PART5: Make raster stack and display maps #############
662 704
#### Extract corresponding raster for given dates and plot stations used

Also available in: Unified diff