Revision f1c5b094
Added by Benoit Parmentier about 12 years ago
climate/research/oregon/interpolation/methods_comparison_assessment_part6.R | ||
---|---|---|
1 |
##################################### METHODS COMPARISON part 6 ########################################## |
|
2 |
#################################### Spatial Analysis ############################################ |
|
3 |
#This script utilizes the R ojbects created during the interpolation phase. # |
|
4 |
#At this stage the script produces figures of various accuracy metrics and compare methods: # |
|
5 |
#This scripts focuses on a detailed studay of differences in the predictions of CAI_kr and FUsion_Kr # |
|
6 |
#AUTHOR: Benoit Parmentier # |
|
7 |
#DATE: 11/30/2012 # |
|
8 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#491 -- # |
|
9 |
################################################################################################### |
|
10 |
|
|
11 |
###Loading R library and packages |
|
12 |
library(gtools) # loading some useful tools such as mixedsort |
|
13 |
library(mgcv) # GAM package by Wood 2006 (version 2012) |
|
14 |
library(sp) # Spatial pacakge with class definition by Bivand et al. 2008 |
|
15 |
library(spdep) # Spatial package with methods and spatial stat. by Bivand et al. 2012 |
|
16 |
library(rgdal) # GDAL wrapper for R, spatial utilities (Keitt et al. 2012) |
|
17 |
library(gstat) # Kriging and co-kriging by Pebesma et al. 2004 |
|
18 |
library(automap) # Automated Kriging based on gstat module by Hiemstra et al. 2008 |
|
19 |
library(spgwr) |
|
20 |
library(gpclib) |
|
21 |
library(maptools) |
|
22 |
library(graphics) |
|
23 |
library(parallel) # Urbanek S. and Ripley B., package for multi cores & parralel processing |
|
24 |
library(raster) |
|
25 |
library(rasterVis) |
|
26 |
library(plotrix) #Draw circle on graph |
|
27 |
library(reshape) |
|
28 |
library(RCurl) |
|
29 |
######### Functions used in the script |
|
30 |
#loading R objects that might have similar names |
|
31 |
|
|
32 |
download_files_with_pattern_ftp<-function(url_dir,out_path,file_pattern){ |
|
33 |
#sadfd |
|
34 |
#adsfd |
|
35 |
#library(RCurl) #modify later using require |
|
36 |
# FTP |
|
37 |
url<-url_dir |
|
38 |
filenames = getURL(url, ftp.use.epsv = FALSE, dirlistonly = TRUE) |
|
39 |
file_pattern_rx<-glob2rx(file_pattern) |
|
40 |
# Deal with newlines as \n or \r\n. (BDR) |
|
41 |
# Or alternatively, instruct libcurl to change \n's to \r\n's for us with crlf = TRUE |
|
42 |
# filenames = getURL(url, ftp.use.epsv = FALSE, ftplistonly = TRUE, crlf = TRUE) |
|
43 |
|
|
44 |
filenames = paste(url, strsplit(filenames, "\r*\n")[[1]], sep = "") |
|
45 |
filenames_all<-filenames |
|
46 |
#Now subset filenames to match wanted files... |
|
47 |
i_file<-grep(file_pattern_rx,filenames_all,value=TRUE) # using grep with "value" extracts the matching names |
|
48 |
pos<-match(i_file,filenames_all) |
|
49 |
|
|
50 |
filenames<-filenames_all[pos] |
|
51 |
53)})) |
|
52 |
for(i in 1:length(filenames)){ |
|
53 |
out_file<-basename(filenames[i]) |
|
54 |
out_file_path<-file.path(out_path,out_file) |
|
55 |
download.file(filenames[i],destfile=out_file_path) |
|
56 |
#creating the file names |
|
57 |
} |
|
58 |
} |
|
59 |
|
|
60 |
###Parameters and arguments |
|
61 |
|
|
62 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
|
63 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
64 |
infile2<-"list_365_dates_04212012.txt" #list of dates |
|
65 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
|
66 |
infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
|
67 |
infile5<-"mean_day244_rescaled.rst" #mean LST for day 244 |
|
68 |
inlistf<-"list_files_05032012.txt" #list of raster images containing the Covariates |
|
69 |
infile6<-"OR83M_state_outline.shp" |
|
70 |
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
71 |
|
|
72 |
out_prefix<-"methods_11012012_" |
|
73 |
|
|
74 |
path_wd<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" |
|
75 |
|
|
76 |
##### MAIN BODY OF CODE ###### |
|
77 |
|
|
78 |
setwd(path_wd) |
|
79 |
latlong <- "+init=epsg:4326" |
|
80 |
url_dir1<- "ftp://anonymous:test@ftp.wcc.nrcs.usda.gov/data/snow/snotel/snothist/" |
|
81 |
url_dir2<- "ftp://anonymous:test@ftp.wcc.nrcs.usda.gov/data/snow/snotel/cards/oregon/" |
|
82 |
file_pat<-"*or*.txt" |
|
83 |
file_pat1<-"*listor.txt" |
|
84 |
file_pat2<-"*all.txt" |
|
85 |
output_path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012/snotel_data_11302012" |
|
86 |
download_files_with_pattern_ftp(url_dir1,path_wd,file_pat1) |
|
87 |
download_files_with_pattern_ftp(url_dir1,output_path,file_pat1) |
|
88 |
download_files_with_pattern_ftp(url_dir2,output_path,file_pat2) |
|
89 |
|
|
90 |
|
|
91 |
reg_outline<-readOGR(".",sub(".shp","",infile6)) |
|
92 |
loc_stat_file<-"listor.txt" |
|
93 |
tmp<-read.table(loc_stat_file,sep=" ",skip=4) |
|
94 |
|
|
95 |
colwidths<-c(5,3,4,5,9,9,5,6,6,50) |
|
96 |
colab<- c("no", "ST", "CTY", "tyype", "HUC", "station", "Lat_pc", "Long_pc", "elev", "sitename") |
|
97 |
loc_tab_snot<-read.fwf(file=loc_stat_file,widths=colwidths,skip=3) |
|
98 |
names(loc_tab_snot)<-colab |
|
99 |
|
|
100 |
y<-loc_stations_snot$Lat_pc/100 |
|
101 |
x<-(loc_stations_snot$Long_pc/100)*-1 |
|
102 |
|
|
103 |
tmp<-SpatialPointsDataFrame(coords=cbind(x,y),data=loc_stations_snot) |
|
104 |
proj4string(tmp)<-CRS(latlong) |
|
105 |
loc_stat_snot<-spTransform(tmp,CRS(proj4string(reg_outline))) |
|
106 |
|
|
107 |
outfile_name<-"loc_stat_snot.shp" |
|
108 |
writeOGR(obj=loc_stat_snot,layer="loc_stat_snot",dsn=outfile_name,driver="ESRI Shapefile", overwrite=T) |
|
109 |
|
|
110 |
file_pat2_rx<-glob2rx(file_pat2) |
|
111 |
snot_data_filename<-list.files(path=output_path,pattern=file_pat2_rx) |
|
112 |
stat_id<-sub("_all.txt","",snot_data_filename) |
|
113 |
tmpchr<-trim(levels(loc_stat_snot$station)) |
|
114 |
loc_stat_snot$station<-tolower(tmpchr) |
|
115 |
|
|
116 |
m<-match(stat_id,loc_stat_snot$station) #This matches the station id location wtih the data files... |
|
117 |
|
|
118 |
|
|
119 |
#put in a loop |
|
120 |
#create giant table/data.frame from all the files...? |
|
121 |
snot_data_name<-file.path(output_path,snot_data_filename[1]) |
|
122 |
snot_data_tab<-read.table(snot_data_name,sep="\t",skip=1) #This is a tab delimited file... |
|
123 |
colab<- c("date", "pill", "prec","tmax", "tmin", "tavg", "prcp") |
|
124 |
names(snot_data_tab)<-colab |
|
125 |
|
|
126 |
snot_fnames<-file.path(output_path,snot_data_filename) |
|
127 |
|
|
128 |
header=TRUE, sep="\t")})) |
|
129 |
read_snot_data<-function(files){ |
|
130 |
snot_data_tab<-read.table(files,sep="\t",skip=1) #This is a tab delimited file... |
|
131 |
stat_id_tmp<-sub("_all.txt","",files) |
|
132 |
names(snot_data_tab)<-c("date", "pill", "prec", "tmax", "tmin", "tavg", "prcp") |
|
133 |
snot_data_tab$id<-stat_id_tmp |
|
134 |
return(snot_data_tab) |
|
135 |
} |
|
136 |
dataset<-do.call("rbind",lapply(file_list, FUN=read_snot_data)) |
|
137 |
|
|
138 |
dataset$id<-basename(dataset$id) |
|
139 |
|
|
140 |
snot_loc_data_OR<-merge(loc_stat_snot,dataset,by.x="station",by.y="id") |
|
141 |
|
|
142 |
tmp44<-subset(snot_loc_data_OR,station=="17d02s") |
|
143 |
tail(snot_data_tab) |
|
144 |
tmp45<-tmp44[tmp44$date=="93012",] |
|
145 |
tail(tmp45) |
|
146 |
tmp45<-tmp44[tmp44$date=="92912",] |
|
147 |
|
|
148 |
test_data<-subset(snot_loc_data_OR,date=="90112" & station=="17d07s") |
|
149 |
|
|
150 |
#Now subset for specific dates... |
|
151 |
|
|
152 |
date_pat="*10" #anything in 2010... |
|
153 |
date_pat_rx<-glob2rx(date_pat) |
|
154 |
#grep(tmp_data$date |
|
155 |
date_selected<-grep(date_pat_rx,snot_loc_data_OR$date,value=TRUE) # using grep with "value" extracts the matching names |
|
156 |
#pos<-match(i_file,filenames_all) |
|
157 |
|
|
158 |
snot_OR_2010<-subset(snot_loc_data_OR,date%in%date_selected) |
|
159 |
|
|
160 |
#tansform in SPDF |
|
161 |
coords<-cbind(snot_OR_2010$x,snot_OR_2010$y) |
|
162 |
snot_OR_2010_sp<-SpatialPointsDataFrame(coords=coords,data=snot_OR_2010) |
|
163 |
length(unique(snot_OR_2010_sp$station)) #Find out about the number of stations... |
|
164 |
dim(snot_OR_2010_sp) |
|
165 |
#write out in SPDF |
|
166 |
outfile_name<-paste("snot_OR_2010_sp2_",out_prefix,".shp",sep="") |
|
167 |
writeOGR(obj=snot_OR_2010_sp,layer="snot_OR_2010",dsn=outfile_name,driver="ESRI Shapefile", overwrite=T) |
|
168 |
|
|
169 |
#####END OF SCRIPT |
|
170 |
# |
|
171 |
# dataset <- do.call("rbind",lapply(file_list, |
|
172 |
# FUN=function(files){read.table(files, |
|
173 |
# skip=1, sep="\t")})) |
|
174 |
# |
|
175 |
|
|
176 |
|
Also available in: Unified diff
Methods comp part6-task#491- Download FTP script and data prepartion for SNOTEL Data