Project

General

Profile

« Previous | Next » 

Revision f682ea83

Added by Benoit Parmentier almost 9 years ago

analyses of extreme values, part 5 assessment script adding section for missing values

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part5.R
283 283
  stat_val <- c(std_dev_val,mean_val,median_val,max_val,min_val,n_val)
284 284
  df_stat <- data.frame(stat_name=stat_name,stat_val=stat_val)
285 285
  
286
  threshol_val <- c(5,6,10)
287
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshol_val[1])
286
  threshold_val <- c(5,6,10)
287
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshold_val[1])
288 288
  100*n_threshold_val/n_val
289 289

  
290
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshol_val[2])
290
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshold_val[2])
291 291
  100*n_threshold_val/n_val
292 292
  
293
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshol_val[3])
293
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshold_val[3])
294 294
  100*n_threshold_val/n_val
295 295
  
296 296
  #Find out where these values are located...by mapping extremes!
297 297
  
298 298
  
299 299
  
300
  
301
  
302
  
303 300
  ###########################
304 301
  ### Figure 1: plot location of the study area with tiles processed
305 302
  
......
408 405
  r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) 
409 406

  
410 407

  
408
  ######################
409
  ### Figure 2: Number of predictions: daily and monthly
410
  
411
  ## Figure 2a
412
 
413
  #Plot location of extremes and select them for further analyses?
414
  
415

  
416
  ## Number of tiles with information:
417
  sum(df_tile_processed$metrics_v) #26,number of tiles with raster object
418
  length(df_tile_processed$metrics_v) #26,number of tiles in the region
419
  sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info
420
  
421
  #coordinates
422
  try(coordinates(summary_metrics_v) <- c("lon","lat"))
423
  #try(coordinates(summary_metrics_v) <- c("lon.y","lat.y"))
424
  
425
  #threshold_missing_day <- c(367,365,300,200)
426
  
427
  nb<-nrow(subset(summary_metrics_v,model_name=="mod1"))  
428
  sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35
429
  
430

  
431
  j<-1 #for model name 1,mod1
432
  model_name <- c("mod1","mod_kr")
433
  for(i in 1:length(threshold_val)){
434
    
435
    
436
    tb_subset <- subset(tb_subset,tb_subset[[metric_name]]>threshold_val[i])
437
    
438
    df_extremes <- as.data.frame(table(tb_subset$tile_id))
439
    names(df_extremes)<- c("tile_id","freq_extremes")
440
    tb_sorted <- merge(tb_subset,df_extremes,"tile_id")
441
    tb_sorted <- arrange(tb_sorted,desc(freq_extremes)) #[,c("pred_mod","rmse","mae","tile_id")]
442
    coordinates(tb_sorted) <- c("lon","lat")
443
    
444
    fig_filename <- paste("Figure2a_barplot_extremes_val_centroids_tile_",model_name[j],"_",threshold_val[i],
445
                       "_",out_suffix,".png",sep="")
446

  
447
    barplot(table(tb_subset$tile_id),main=paste("Extremes threshold val for ",threshold_val[i],sep=""),
448
            ylab="frequency",xlab="tile_id",las=2)
449
    dev.off()
450

  
451
    test<-(subset(tb,tb$tile_id==unique(tb_subset$tile_id)))
452
    #df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")]
453
    
454
    #plot top three, then all,and histogram...make this a function...
455
    list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
456

  
457
    #summary_metrics_v$n_missing <- summary_metrics_v$n == 365
458
    #summary_metrics_v$n_missing <- summary_metrics_v$n < 365
459
    #summary_metrics_v$n_missing <- as.numeric(summary_metrics_v$n < threshold_missing_day[i])
460
    #summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1")
461
    
462
    fig_filename <- paste("Figure7a_ac_metrics_extremes_map_centroids_tile_",model_name[j],"_",threshold_val[i],
463
                       "_",out_suffix,".png",sep="")
464
    list_outfiles[[counter_fig+i]] <- fig_filename
465

  
466
    if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!!
467
      
468
      #res_pix <- 1200
469
      res_pix <- 960
470
      col_mfrow <- 1
471
      row_mfrow <- 1
472
      #only mod1 right now
473
      png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
474
                       "_",out_suffix,".png",sep=""),
475
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
476
    
477
      model_name[j]
478
    
479
      #p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
480
      p_shp <- spplot(reg_layer,"ISO3" ,col.regions=NA, col="black") #ok problem solved!!
481
      #title("(a) Mean for 1 January")
482
      p <- bubble(tb_sorted,"freq_extremes",main=paste("Extremes per tile and by ",model_name[j]," for ",
483
                                                                threshold_val[i]))
484
      p1 <- p+p_shp
485
      try(print(p1)) #error raised if number of missing values below a threshold does not exist
486
      dev.off()
487

  
488
    } 
489
     
490
    #list_outfiles[[counter_fig+i]] <- fig_filename
491
  }
492
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
493

  
494
  r18 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]])
495
  r19 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]])  
496
  r20 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[20]])
497
  r21 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[21]])  
498

  
411 499
  ######################################################
412 500
  ##### Prepare objet to return ####
413 501

  

Also available in: Unified diff