Revision f82d4df1
Added by Benoit Parmentier about 12 years ago
climate/research/oregon/interpolation/methods_comparison_assessment_part1.R | ||
---|---|---|
1 | 1 |
##################################### METHOD COMPARISON ########################################## |
2 | 2 |
#################################### Spatial Analysis ######################################## |
3 |
#This script utilizes the R ojbects created during the interpolation phase. # |
|
4 |
#At this stage the script produces figures of various accuracy metrics and compare methods: # |
|
5 |
#- multisampling plots # |
|
6 |
#- spatial accuracy in terms of distance to closest station # |
|
7 |
#- spatial density of station network and accuracy metric # |
|
8 |
#AUTHOR: Benoit Parmentier # |
|
9 |
#DATE: 09/25/2012 # |
|
10 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#??-- # |
|
3 |
#This script utilizes the R ojbects created during the interpolation phase. |
|
4 |
# R ojbects must be supplied in a text file with along with their names. |
|
5 |
# Five mehods are compared over set of year: Kriging, GWR, GAM, CAI and FUSION. |
|
6 |
# At this stage the script produces figures of various accuracy metrics and compare x: # |
|
7 |
#- boxplots for MAE, RMSE and other accuracy metrics |
|
8 |
#- MAE, RMSE plots per month |
|
9 |
#- visualization of map results for all predictions method |
|
10 |
|
|
11 |
#AUTHOR: Benoit Parmentier |
|
12 |
#DATE: 10/12/2012 |
|
13 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#491-- |
|
14 |
|
|
11 | 15 |
################################################################################################### |
12 | 16 |
|
13 | 17 |
###Loading R library and packages |
... | ... | |
19 | 23 |
library(gstat) # Kriging and co-kriging by Pebesma et al. 2004 |
20 | 24 |
library(automap) # Automated Kriging based on gstat module by Hiemstra et al. 2008 |
21 | 25 |
library(spgwr) |
22 |
library(gpclib) |
|
23 | 26 |
library(maptools) |
24 | 27 |
library(graphics) |
25 | 28 |
library(parallel) # Urbanek S. and Ripley B., package for multi cores & parralel processing |
26 | 29 |
library(raster) |
27 | 30 |
library(rasterVis) |
28 |
library(plotrix) #Draw circle on graph
|
|
29 |
library(reshape) |
|
31 |
library(plotrix) #Draw circle on graph and additional plotting options
|
|
32 |
library(reshape) #Data format and type transformation
|
|
30 | 33 |
## Functions |
31 | 34 |
#loading R objects that might have similar names |
32 | 35 |
load_obj <- function(f) |
... | ... | |
48 | 51 |
infile6<-"OR83M_state_outline.shp" |
49 | 52 |
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
50 | 53 |
|
51 |
|
|
52 |
obj_list<-"list_obj_08262012.txt" #Results of fusion from the run on ATLAS |
|
54 |
obj_list<-"list_obj_10172012.txt" #Results of fusion from the run on ATLAS |
|
55 |
#obj_list<-"list_obj_08262012.txt" #Results of fusion from the run on ATLAS
|
|
53 | 56 |
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison" #Jupiter LOCATION on Atlas for kriging #Jupiter Location on XANDERS |
54 |
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/" #Local dropbox folder on Benoit's laptop |
|
55 | 57 |
setwd(path) |
56 | 58 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
57 | 59 |
#Number of kriging model |
58 |
out_prefix<-"methods_09262012_" #User defined output prefix |
|
59 |
|
|
60 |
sampling_CAI<-load_obj("results2_CAI_sampling_obj_09132012_365d_GAM_CAI2_multisampling2.RData") |
|
61 |
sampling_fus<-load_obj("results2_fusion_sampling_obj_10d_GAM_fusion_multisamp4_09192012.RData") |
|
62 |
fus_CAI_mod<-load_obj("results2_CAI_Assessment_measure_all_09132012_365d_GAM_CAI2_multisampling2.RData") |
|
63 |
gam_fus_mod1<-load_obj("results2_fusion_Assessment_measure_all_10d_GAM_fusion_multisamp4_09192012.RData") |
|
60 |
out_prefix<-"methods_10172012_" #User defined output prefix |
|
64 | 61 |
|
65 | 62 |
filename<-sub(".shp","",infile1) #Removing the extension from file. |
66 | 63 |
ghcn<-readOGR(".", filename) #reading shapefile |
67 | 64 |
|
65 |
### PREPARING RASTER COVARIATES STACK ####### |
|
66 |
|
|
68 | 67 |
#CRS<-proj4string(ghcn) #Storing projection information (ellipsoid, datum,etc.) |
69 | 68 |
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="") #Column 1 contains the names of raster files |
70 | 69 |
inlistvar<-lines[,1] |
... | ... | |
94 | 93 |
mm_01<-mask(mm_01,mask_land_NA) |
95 | 94 |
#mention this is the last... files |
96 | 95 |
|
97 |
### RESULTS COMPARISON
|
|
96 |
############# METHODS COMPARISON ###########
|
|
98 | 97 |
|
99 |
### CODE BEGIN #####
|
|
100 |
|
|
101 |
### PART I MULTISAMPLING COMPARISON ####
|
|
98 |
######################################################################
|
|
99 |
# PART 1 : USING ACCURACY METRICS FOR FIVE METHODS COMPARISON |
|
100 |
# Boxplots and histograms
|
|
102 | 101 |
|
103 |
tb_diagnostic<-sampling_CAI$tb |
|
104 |
tb_diagnostic2<-sampling_fus$tb |
|
102 |
lines<-read.table(paste(path,"/",obj_list,sep=""), sep=",") #Column 1 contains the names RData objects |
|
103 |
inlistobj<-lines[,1] |
|
104 |
inlistobj<-paste(path,"/",as.character(inlistobj),sep="") |
|
105 |
obj_names<-as.character(lines[,2]) #Column two contains short names for obj. model |
|
105 | 106 |
|
106 |
tb_diagnostic[["prop"]]<-as.factor(tb_diagnostic[["prop"]]) |
|
107 |
tb_diagnostic2[["prop"]]<-as.factor(tb_diagnostic2[["prop"]]) |
|
108 |
|
|
109 |
#Preparing the data for the plot |
|
110 |
#fus data |
|
111 |
t<-melt(tb_diagnostic, |
|
112 |
measure=c("mod1","mod2","mod3","mod4", "mod5", "mod6", "mod7", "mod8","mod9"), |
|
113 |
id=c("dates","metric","prop"), |
|
114 |
na.rm=F) |
|
115 |
avg_tb<-cast(t,metric+prop~variable,mean) |
|
116 |
sd_tb<-cast(t,metric+prop~variable,sd) |
|
117 |
n_tb<-cast(t,metric+prop~variable,length) |
|
118 |
avg_tb[["prop"]]<-as.numeric(as.character(avg_tb[["prop"]])) |
|
119 |
avg_RMSE<-subset(avg_tb,metric=="RMSE") |
|
120 |
|
|
121 |
#CAI data |
|
122 |
t2<-melt(tb_diagnostic2, |
|
123 |
measure=c("mod1","mod2","mod3","mod4", "mod5", "mod6", "mod7", "mod8","mod9"), |
|
124 |
id=c("dates","metric","prop"), |
|
125 |
na.rm=F) |
|
126 |
avg_tb2<-cast(t2,metric+prop~variable,mean) |
|
127 |
sd_tb2<-cast(t2,metric+prop~variable,sd) |
|
128 |
n_tb2<-cast(t2,metric+prop~variable,length) |
|
129 |
avg_tb2[["prop"]]<-as.numeric(as.character(avg_tb2[["prop"]])) |
|
130 |
avg_RMSE2<-subset(avg_tb2,metric=="RMSE") |
|
131 |
|
|
132 |
#Select only information related to FUSION |
|
133 |
|
|
134 |
x<-avg_RMSE[["prop"]] |
|
135 |
i=9 |
|
136 |
mod_name<-paste("mod",i,sep="") |
|
137 |
y<-avg_RMSE[[mod_name]] |
|
138 |
|
|
139 |
sd_tb_RMSE <- subset(sd_tb, metric=="RMSE") |
|
140 |
x_sd<-sd_tb_RMSE[["prop"]] |
|
141 |
i=9 |
|
142 |
mod_name<-paste("mod",i,sep="") |
|
143 |
y_sd<-sd_tb_RMSE[[mod_name]] |
|
144 |
|
|
145 |
#Select only information related to CAI |
|
146 |
|
|
147 |
x2<-avg_RMSE2[["prop"]] |
|
148 |
i=9 |
|
149 |
mod_name<-paste("mod",i,sep="") |
|
150 |
y2<-avg_RMSE2[[mod_name]] |
|
151 |
|
|
152 |
sd_tb_RMSE2 <- subset(sd_tb2, metric=="RMSE") |
|
153 |
x_sd2<-sd_tb_RMSE2[["prop"]] |
|
154 |
i=9 |
|
155 |
mod_name<-paste("mod",i,sep="") |
|
156 |
y_sd2<-sd_tb_RMSE2[[mod_name]] |
|
157 |
|
|
158 |
n=150 |
|
159 |
ciw <- qt(0.975, n) * y_sd / sqrt(n) |
|
160 |
ciw2 <- qt(0.975, n) * y_sd2 / sqrt(n) |
|
161 |
|
|
162 |
X11() |
|
163 |
plotCI(y=y, x=x, uiw=ciw, col="black", main=" FUS: RMSE proportion of hold out", barcol="blue", lwd=1) |
|
164 |
lines(x,y,col="grey") |
|
165 |
plotCI(y=y2, x=x2, uiw=ciw2, col="black", main=" CAI: RMSE proportion of hold out", barcol="blue", lwd=1) |
|
166 |
lines(x2,y2,col="grey") |
|
167 |
plot(x,y,col="grey",type="b") |
|
168 |
lines(x2,y2,col="blue") |
|
169 |
|
|
170 |
savePlot(paste("fus_CAI_multisapling_",out_prefix,".png", sep=""), type="png") |
|
171 |
dev.off() |
|
172 |
|
|
173 |
|
|
174 |
### PART II SPATIAL PATTERN COMPARISON: TEMPORAL PROFILES #### |
|
175 |
|
|
176 |
|
|
177 |
#gam_fus_mod1<-method_mod$gam_fus_mod1 |
|
178 |
#fus_CAI_mod<- method_mod$fus_CAI_mod |
|
179 |
#gwr_mod<-method_mod$gwr_mod |
|
180 |
l_f<-list.files(pattern="*tmax_predicted.*fusion5.rst$") #Search for files in relation to fusion |
|
181 |
l_f2<-list.files(pattern="CAI_tmax_predicted.*_GAM_CAI2.rst$") |
|
182 |
inlistpred<-paste(path,"/",as.character(l_f),sep="") |
|
183 |
inlistpred2<-paste(path,"/",as.character(l_f2),sep="") |
|
184 |
|
|
185 |
fus_rast<- stack(inlistpred) #Creating a stack of raster images from the list of variables. |
|
186 |
cai_rast<- stack(inlistpred2) #Creating a stack of raster images from the list of variables. |
|
187 |
|
|
188 |
id<-unique(ghcn$station) |
|
189 |
ghcn_id<-as.data.frame(subset(ghcn,select=c("station","x_OR83M","y_OR83M"))) |
|
190 |
|
|
191 |
ghcn_melt<-melt(ghcn_id, |
|
192 |
measure=c("x_OR83M","y_OR83M"), |
|
193 |
id=c("station"), |
|
194 |
na.rm=F) |
|
195 |
|
|
196 |
ghcn_cast<-cast(ghcn_melt,station~variable,mean) |
|
197 |
ghcn_locs<-as.data.frame(ghcn_cast) |
|
198 |
|
|
199 |
coords<- ghcn_locs[,c('x_OR83M','y_OR83M')] |
|
200 |
coordinates(ghcn_locs)<-coords |
|
201 |
proj4string(ghcn_locs)<-proj_str #Need to assign coordinates... |
|
202 |
|
|
203 |
tmp<-extract(fus_rast,ghcn_locs) |
|
204 |
tmp2<-extract(cai_rast,ghcn_locs) |
|
205 |
|
|
206 |
tmp_names<-paste("fusd",seq(1,365),sep="") |
|
207 |
colnames(tmp)<-tmp_names |
|
208 |
tmp_names<-paste("caid",seq(1,365),sep="") |
|
209 |
colnames(tmp2)<-tmp_names |
|
210 |
ghcn_fus_pred<-cbind(as.data.frame(ghcn_locs),as.data.frame(tmp)) |
|
211 |
ghcn_cai_pred<-cbind(as.data.frame(ghcn_locs),as.data.frame(tmp2)) |
|
212 |
|
|
213 |
write.table(ghcn_fus_pred,file="extract3_fus_y2010.txt",sep=",") |
|
214 |
write.table(ghcn_cai_pred,file="extract3_cai_y2010.txt",sep=",") |
|
215 |
|
|
216 |
ghcn$value[ghcn$value< -150 | ghcn$value>400]<-NA #screenout values out of range |
|
217 |
ghcn$value<-ghcn$value/10 |
|
218 |
ghcn_m<-melt(as.data.frame(ghcn), |
|
219 |
measure=c("value"), |
|
220 |
id=c("station","date"), |
|
221 |
na.rm=F) |
|
222 |
|
|
223 |
ghcn_mc<-cast(ghcn_m,station~date~variable,mean) #This creates an array of dimension 186,366,1 |
|
224 |
|
|
225 |
ghcn_value<-as.data.frame(ghcn_mc[,,1]) |
|
226 |
ghcn_value<-cbind(ghcn_locs,ghcn_value[,1:365]) |
|
227 |
write.table(ghcn_value,na="",file="extract3_dailyTmax_y2010.txt",sep=",") |
|
228 |
|
|
229 |
id<-c("USW00094261","USW00004141","USC00356252","USC00357208") |
|
230 |
m<-match(id,ghcn_locs$station) |
|
231 |
dat_id<-ghcn_locs[m,] #creating new subset |
|
232 |
#dat_id<-subset(ghcn_locs[gj]) |
|
233 |
|
|
234 |
filename<-sub(".shp","",infile6) #Removing the extension from file. |
|
235 |
reg_outline<-readOGR(".", filename) #reading shapefile |
|
236 |
X11() |
|
237 |
s.range <- c(min(minValue(mm_01)), max(maxValue(mm_01))) |
|
238 |
col.breaks <- pretty(s.range, n=50) |
|
239 |
lab.breaks <- pretty(s.range, n=5) |
|
240 |
temp.colors <- colorRampPalette(c('blue', 'white', 'red')) |
|
241 |
plot(mm_01, breaks=col.breaks, col=temp.colors(length(col.breaks)-1), |
|
242 |
axis=list(at=lab.breaks, labels=lab.breaks)) |
|
243 |
plot(reg_outline, add=TRUE) |
|
244 |
plot(dat_id,cex=1.5,add=TRUE) |
|
245 |
title("Selected stations for comparison",line=3) |
|
246 |
title("(Background: mean January LST)", cex=0.5, line=2) |
|
247 |
coords<-coordinates(dat_id) |
|
248 |
text(x=coords[,1],y=coords[,2],labels=id,cex=0.8, adj=c(0,1),offset=2) #c(0,1) for lower right corner! |
|
249 |
savePlot(paste("temporal_profile_station_locations_map",out_prefix,".png", sep=""), type="png") |
|
250 |
dev.off() |
|
251 |
|
|
252 |
stat_list<-vector("list",3 ) |
|
253 |
stat_list[[1]]<-ghcn_fus_pred |
|
254 |
stat_list[[2]]<-ghcn_cai_pred |
|
255 |
stat_list[[3]]<-ghcn_value |
|
256 |
ac_temp<-matrix(NA,length(id),2) |
|
257 |
|
|
258 |
#id<-ghcn_value$station #if runinng on all the station... |
|
259 |
for (i in 1:length(id)){ |
|
260 |
m1<-match(id[i],ghcn_fus_pred$station) |
|
261 |
m2<-match(id[i],ghcn_cai_pred$station) |
|
262 |
m3<-match(id[i],ghcn_value$station) |
|
263 |
y1<-as.numeric(ghcn_fus_pred[m1,6:ncol(ghcn_fus_pred)]) |
|
264 |
y2<-as.numeric(ghcn_cai_pred[m2,6:ncol(ghcn_cai_pred)]) |
|
265 |
y3<-as.numeric(ghcn_value[m3,6:ncol(ghcn_value)]) |
|
266 |
res2<-y2-y3 |
|
267 |
res1<-y1-y3 |
|
268 |
x<-1:365 |
|
269 |
X11(6,15) |
|
270 |
plot(x,y1,type="l",col="black") |
|
271 |
lines(x,y2,col="blue") |
|
272 |
lines(x,y3,col="red") |
|
273 |
title(paste("temporal profile for station ", id[i],sep="")) |
|
274 |
# add a legend |
|
275 |
legend("topright",legend=c("fus","CAI","OBS"), cex=1.2, col=c("black","blue","red"), |
|
276 |
lty=1, title="tmax") |
|
277 |
savePlot(paste("Temporal_profile_",id[i],out_prefix,".png", sep=""), type="png") |
|
278 |
zero<-rep(0,365) |
|
279 |
plot(x,res2,type="l",col="black") |
|
280 |
lines(x,res1,col="blue") |
|
281 |
lines(x,zero,col="red") |
|
282 |
legend("topright",legend=c("fus","CAI"), cex=1.2, col=c("black","blue"), |
|
283 |
lty=1, title="tmax") |
|
284 |
savePlot(paste("Temporal_profile_res",id[i],out_prefix,".png", sep=""), type="png") |
|
285 |
|
|
286 |
ac_temp[i,1]<-mean(abs(res1),na.rm=T) |
|
287 |
ac_temp[i,2]<-mean(abs(res2),na.rm=T) |
|
288 |
dev.off() |
|
289 |
} |
|
290 |
ac_temp<-as.data.frame(ac_temp) |
|
291 |
ac_temp$station<-id |
|
292 |
names(ac_temp)<-c("fus","CAI","station") |
|
293 |
|
|
294 |
id<-ghcn_value$station #if runinng on all the station... |
|
295 |
ac_temp2<-matrix(NA,length(id),2) |
|
296 |
|
|
297 |
for (i in 1:length(id)){ |
|
298 |
m1<-match(id[i],ghcn_fus_pred$station) |
|
299 |
m2<-match(id[i],ghcn_cai_pred$station) |
|
300 |
m3<-match(id[i],ghcn_value$station) |
|
301 |
y1<-as.numeric(ghcn_fus_pred[m1,6:ncol(ghcn_fus_pred)]) |
|
302 |
y2<-as.numeric(ghcn_cai_pred[m2,6:ncol(ghcn_cai_pred)]) |
|
303 |
y3<-as.numeric(ghcn_value[m3,6:ncol(ghcn_value)]) |
|
304 |
res2<-y2-y3 |
|
305 |
res1<-y1-y3 |
|
306 |
ac_temp2[i,1]<-mean(abs(res1),na.rm=T) |
|
307 |
ac_temp2[i,2]<-mean(abs(res2),na.rm=T) |
|
308 |
} |
|
309 |
|
|
310 |
ac_temp2<-as.data.frame(ac_temp2) |
|
311 |
ac_temp2$station<-id |
|
312 |
names(ac_temp2)<-c("fus","CAI","station") |
|
313 |
|
|
314 |
ac_temp2<-ac_temp2[order(ac_temp2$fus,ac_temp2$CAI), ] |
|
315 |
ghcn_MAE<-merge(ghcn_locs,ac_temp2,by.x=station,by.y=station) |
|
316 |
##### USING TEMPORAL IMAGES... |
|
317 |
|
|
318 |
date_list<-vector("list", length(l_f)) |
|
319 |
for (k in 1:length(l_f)){ |
|
320 |
tmp<-(unlist(strsplit(l_f[k],"_"))) #spliting file name to obtain the prediction date |
|
321 |
date_list[k]<-tmp[4] |
|
322 |
} |
|
107 |
nel<-length(inlistobj) |
|
108 |
method_mod <-vector("list",nel) #list of one row data.frame |
|
109 |
method_tb <-vector("list",nel) #list of one row data.frame |
|
110 |
method_mean<-vector("list",nel) |
|
323 | 111 |
|
324 |
|
|
325 |
|
|
326 |
date_list2<-vector("list", length(l_f2)) |
|
327 |
for (k in 1:length(l_f2)){ |
|
328 |
tmp<-(unlist(strsplit(l_f2[k],"_"))) #spliting file name to obtain the prediction date |
|
329 |
date_list2[k]<-tmp[4] |
|
112 |
for (i in 1:length(inlistobj)){ |
|
113 |
obj_tmp<-load_obj(inlistobj[i]) |
|
114 |
method_mod[[i]]<-obj_tmp |
|
115 |
#names(method_mod[[i]])<-obj_names[i] |
|
330 | 116 |
} |
117 |
obj_tmp<-load_obj(inlistobj[i]) |
|
331 | 118 |
|
332 |
setdiff(date_list,date_list2) |
|
333 |
all.equal(date_list,date_list2) #This checks that both lists are equals |
|
334 |
|
|
335 |
list_fus_data_s<-vector("list", 365) |
|
336 |
list_cai_data_s<-vector("list", 365) |
|
337 |
list_fus_data_v<-vector("list", 365) |
|
338 |
list_cai_data_v<-vector("list", 365) |
|
119 |
names(method_mod)<-obj_names |
|
339 | 120 |
|
340 |
list_fus_data<-vector("list", 365) |
|
341 |
list_cai_data<-vector("list", 365) |
|
121 |
#Condense and add other comparison, transform in function?? |
|
342 | 122 |
|
343 |
list_dstspat_er<-vector("list", 365) |
|
344 |
k=1 |
|
345 |
for (k in 1:365){ |
|
346 |
|
|
347 |
#Start loop over the full year!!! |
|
348 |
names(gam_fus_mod1[[k]]) |
|
349 |
data_s<-gam_fus_mod1[[k]]$data_s |
|
350 |
data_v<-gam_fus_mod1[[k]]$data_v |
|
351 |
|
|
352 |
date_proc<-unique(data_s$date) |
|
353 |
index<-match(as.character(date_proc),unlist(date_list)) #find the correct date.. |
|
354 |
#raster_pred<-raster(rp_raster,index) |
|
355 |
raster_pred<-raster(l_f[[index]]) |
|
356 |
layerNames(raster_pred)<-"y_pred" |
|
357 |
projection(raster_pred)<-proj_str |
|
358 |
pred_sgdf<-as(raster_pred,"SpatialGridDataFrame") #Conversion to spatial grid data frame |
|
359 |
|
|
360 |
rpred_val_s <- overlay(pred_sgdf,data_s) #This overlays the kriged surface tmax and the location of weather stations |
|
361 |
rpred_val_v <- overlay(pred_sgdf,data_v) #This overlays the kriged surface tmax and the location of weather stations |
|
123 |
for(k in 1:length(method_mod)){ # start of the for main loop to all methods |
|
362 | 124 |
|
363 |
pred_mod<-"pred_fus" #Change for the name of the method |
|
364 |
#Adding the results back into the original dataframes. |
|
365 |
data_s[[pred_mod]]<-rpred_val_s$y_pred |
|
125 |
tb<-method_mod[[k]][[1]][[3]][0,] #copy |
|
126 |
mod_tmp<-method_mod[[k]] |
|
366 | 127 |
|
367 |
data_v[[pred_mod]]<-rpred_val_v$y_pred |
|
368 |
res_mod_s<- data_s$dailyTmax - data_s[[pred_mod]] #Residuals from kriging training |
|
369 |
res_mod_v<- data_v$dailyTmax - data_v[[pred_mod]] #Residuals from kriging validation |
|
370 |
|
|
371 |
res_mod<-"res_fus" |
|
372 |
data_v[[res_mod]]<-res_mod_v |
|
373 |
data_s[[res_mod]]<-res_mod_s |
|
374 |
|
|
375 |
#####second series added |
|
376 |
data_v2<-fus_CAI_mod[[k]]$data_v |
|
377 |
data_s2<-fus_CAI_mod[[k]]$data_s |
|
378 |
|
|
379 |
date_proc<-unique(data_s$date) |
|
380 |
index<-match(as.character(date_proc),unlist(date_list)) #find the correct date.. |
|
381 |
#raster_pred<-raster(rp_raster,index) |
|
382 |
raster_pred2<-raster(l_f2[[index]]) |
|
383 |
layerNames(raster_pred2)<-"y_pred" |
|
384 |
projection(raster_pred2)<-proj_str |
|
385 |
pred_sgdf2<-as(raster_pred2,"SpatialGridDataFrame") #Conversion to spatial grid data frame |
|
128 |
for (i in 1:365){ # Assuming 365 days of prediction |
|
129 |
tmp<-mod_tmp[[i]][[3]] |
|
130 |
tb<-rbind(tb,tmp) |
|
131 |
} |
|
386 | 132 |
|
387 |
rpred_val_s2 <- overlay(pred_sgdf2,data_s2) #This overlays the kriged surface tmax and the location of weather stations |
|
388 |
rpred_val_v2 <- overlay(pred_sgdf2,data_v2) #This overlays the kriged surface tmax and the location of weather stations |
|
133 |
rm(mod_tmp) |
|
389 | 134 |
|
390 |
pred_mod2<-"pred_CAI" #Change for the name of the method
|
|
391 |
#Adding the results back into the original dataframes.
|
|
392 |
data_s2[[pred_mod2]]<-rpred_val_s2$y_pred
|
|
135 |
for(i in 4:(ncol(tb))){ # start of the for loop #1
|
|
136 |
tb[,i]<-as.numeric(as.character(tb[,i]))
|
|
137 |
}
|
|
393 | 138 |
|
394 |
data_v2[[pred_mod2]]<-rpred_val_v2$y_pred |
|
395 |
res_mod_s2<- data_s2$dailyTmax - data_s2[[pred_mod2]] #Residuals from kriging training |
|
396 |
res_mod_v2<- data_v2$dailyTmax - data_v2[[pred_mod2]] #Residuals from kriging validation |
|
139 |
method_tb[[k]]<-tb |
|
140 |
tb_RMSE<-subset(tb, metric=="RMSE") |
|
141 |
tb_MAE<-subset(tb,metric=="MAE") |
|
142 |
tb_ME<-subset(tb,metric=="ME") |
|
143 |
tb_R2<-subset(tb,metric=="R2") |
|
144 |
tb_RMSE_f<-subset(tb, metric=="RMSE_f") |
|
145 |
tb_MAE_f<-subset(tb,metric=="MAE_f") |
|
146 |
|
|
147 |
tb_diagnostic1<-rbind(tb_RMSE,tb_MAE,tb_ME,tb_R2) |
|
148 |
|
|
149 |
na_mod<-colSums(!is.na(tb_RMSE[,4:ncol(tb)])) |
|
150 |
for (j in 4:ncol(tb)){ |
|
151 |
|
|
152 |
if (na_mod[j-3]<183){ |
|
153 |
tb_RMSE<-tb_RMSE[,-j] #Remove columns that have too many missing values!!! |
|
154 |
} |
|
155 |
} |
|
397 | 156 |
|
398 |
res_mod2<-"res_CAI" |
|
399 |
data_v2[[res_mod2]]<-res_mod_v2 |
|
400 |
data_s2[[res_mod2]]<-res_mod_s2 |
|
157 |
na_mod<-colSums(!is.na(tb_MAE[,4:ncol(tb)])) |
|
158 |
for (j in 4:ncol(tb)){ |
|
159 |
|
|
160 |
if (na_mod[j-3]<183){ |
|
161 |
tb_MAE<-tb_MAE[,-j] #Remove columns that have too many missing values!!! |
|
162 |
} |
|
163 |
} |
|
401 | 164 |
|
402 |
###Checking if training and validation have the same columns |
|
403 |
nd<-setdiff(names(data_s),names(data_v)) |
|
404 |
nd2<-setdiff(names(data_s2),names(data_v2)) |
|
165 |
na_mod<-colSums(!is.na(tb_MAE_f[,4:ncol(tb)])) |
|
166 |
for (j in 4:ncol(tb)){ |
|
167 |
|
|
168 |
if (na_mod[j-3]<183){ |
|
169 |
tb_MAE_f<-tb_MAE_f[,-j] #Remove columns that have too many missing values!!! |
|
170 |
} |
|
171 |
} |
|
405 | 172 |
|
406 |
data_v[[nd]]<-NA #daily_delta is not the same |
|
173 |
na_mod<-colSums(!is.na(tb_ME[,4:ncol(tb)])) |
|
174 |
for (j in 4:ncol(tb)){ |
|
175 |
|
|
176 |
if (na_mod[j-3]<183){ |
|
177 |
tb_ME<-tb_ME[,-j] #Remove columns that have too many missing values!!! |
|
178 |
} |
|
179 |
} |
|
407 | 180 |
|
408 |
data_v$training<-rep(0,nrow(data_v)) |
|
409 |
data_v2$training<-rep(0,nrow(data_v2)) |
|
410 |
data_s$training<-rep(1,nrow(data_s)) |
|
411 |
data_s2$training<-rep(1,nrow(data_s2)) |
|
181 |
#Add assessment of missing prediction over the year. |
|
412 | 182 |
|
413 |
#if length(nd)!=0 { |
|
414 |
# for (j in 1:length(nd)) |
|
415 |
# data_s |
|
416 |
#} |
|
183 |
mean_RMSE<-sapply(tb_RMSE[,4:ncol(tb_RMSE)],mean,na.rm=T |
|
184 |
mean_MAE<-sapply(tb_MAE[,4:ncol(tb_MAE)],mean,na.rm=T) |
|
185 |
mean_R2<-sapply(tb_R2[,4:ncol(tb_R2)],mean, n.rm=T) |
|
186 |
mean_ME<-sapply(tb_ME[,4:ncol(tb_ME)],mean,na.rm=T) |
|
187 |
mean_MAE_f<-sapply(tb_MAE[,4:ncol(tb_MAE_f)],mean,na.rm=T) |
|
188 |
mean_RMSE_f<-sapply(tb_RMSE_f[,4:ncol(tb_RMSE_f)],mean,na.rm=T) |
|
189 |
mean_list<-list(mean_RMSE,mean_MAE,mean_R2,mean_ME,mean_MAE_f,mean_RMSE_f) |
|
190 |
names(mean_list)<-c("RMSE","MAE","R2","ME","MAE_f","RMSE_f") |
|
191 |
method_mean[[k]]<-mean_list |
|
192 |
names_methods<-obj_names |
|
417 | 193 |
|
418 |
list_fus_data_s[[k]]<-data_s |
|
419 |
list_cai_data_s[[k]]<-data_s2 |
|
420 |
list_fus_data_v[[k]]<-data_v |
|
421 |
list_cai_data_v[[k]]<-data_v2 |
|
422 |
list_fus_data[[k]]<-rbind(data_v,data_s) |
|
423 |
list_cai_data[[k]]<-rbind(data_v2,data_s2) |
|
194 |
sd_RMSE<-sapply(tb_RMSE[,4:ncol(tb_RMSE)],sd,na.rm=T) |
|
195 |
sd_MAE<-sapply(tb_MAE[,4:ncol(tb_MAE)],sd,na.rm=T) |
|
424 | 196 |
|
425 |
d_s_v<-matrix(0,nrow(data_v),nrow(data_s)) |
|
426 |
for(i in 1:nrow(data_s)){ |
|
427 |
pt<-data_s[i,] |
|
428 |
d_pt<-(spDistsN1(data_v,pt,longlat=FALSE))/1000 #Distance to stataion i in km |
|
429 |
d_s_v[,i]<-d_pt |
|
430 |
} |
|
197 |
# Now create plots |
|
431 | 198 |
|
432 |
#Create data.frame with position, ID, dst and residuals... |
|
433 |
pos<-vector("numeric",nrow(data_v)) |
|
434 |
y<-vector("numeric",nrow(data_v)) |
|
435 |
dst<-vector("numeric",nrow(data_v)) |
|
436 |
for (i in 1:nrow(data_v)){ |
|
437 |
pos[i]<-match(min(d_s_v[i,]),d_s_v[i,]) |
|
438 |
dst[i]<-min(d_s_v[i,]) |
|
439 |
} |
|
199 |
png(paste("RMSE_for_",names_methods[k],out_prefix,".png", sep="")) |
|
200 |
boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],ylim=c(1,4.5), |
|
201 |
ylab= "RMSE", outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
202 |
dev.off() |
|
440 | 203 |
|
441 |
#Check if 8 models exist in data_v, if it doesn't then add column with name and "NA" |
|
442 |
#mod_name<-paste(rep("res_mod",8),1:8,sep="") |
|
443 |
#t2<-match(names(data_v),mod_name) |
|
444 |
#dstspat_er<-as.data.frame(cbind(as.vector(data_v$id),as.vector(data_s$id[pos]),pos, dst,res_mod_v)) |
|
445 |
dstspat_er<-as.data.frame(cbind(as.vector(data_v$id),as.vector(data_s$id[pos]),pos, data_v$lat, data_v$lon, data_v$x_OR83M,data_v$y_OR83M, |
|
446 |
dst, |
|
447 |
res_mod_v, |
|
448 |
data_v$res_mod1, |
|
449 |
data_v$res_mod2, |
|
450 |
data_v$res_mod3, |
|
451 |
data_v$res_mod4, |
|
452 |
data_v$res_mod5, |
|
453 |
res_mod_v2)) |
|
204 |
#boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
205 |
png(paste("MAE_for_",names_methods[k],out_prefix,".png", sep="")) |
|
206 |
boxplot(tb_MAE[,4:ncol(tb_MAE)],main=names_methods[k], ylim=c(1,3.5), |
|
207 |
ylab= "MAE", outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
208 |
dev.off() |
|
454 | 209 |
|
455 |
names(dstspat_er)[1:7]<-c("v_id","s_id","pos","lat","lon","x_OR83M","y_OR83M") |
|
456 |
names(dstspat_er)[10:15]<-c("res_mod1","res_mod2","res_mod3","res_mod4","res_mod5","res_CAI") |
|
457 |
list_dstspat_er[[k]]<-dstspat_er |
|
458 |
|
|
459 |
} |
|
460 |
save(list_dstspat_er,file="spat_ac5.RData") |
|
461 |
#obj_tmp2<-load_obj("spat_ac4.RData") |
|
462 |
save(list_fus_data,file="list_fus_data_combined.RData") |
|
463 |
save(list_cai_data,file="list_cai_data_combined.RData") |
|
464 |
|
|
465 |
save(list_fus_data_s,file="list_fus_data_s_combined.RData") |
|
466 |
save(list_cai_data_s,file="list_cai_data_s_combined.RData") |
|
467 |
save(list_fus_data_v,file="list_fus_data_v_combined.RData") |
|
468 |
save(list_cai_data_v,file="list_cai_data_v_combined.RData") |
|
469 |
|
|
470 |
for (k in 1:365){ |
|
471 |
data_s<-as.data.frame(list_fus_data_s[[k]]) |
|
472 |
data_v<-as.data.frame(list_fus_data_v[[k]]) |
|
473 |
list_fus_data[[k]]<-rbind(data_s,data_v) |
|
474 |
data_s2<-as.data.frame(list_cai_data_s[[k]]) |
|
475 |
data_v2<-as.data.frame(list_cai_data_v[[k]]) |
|
476 |
list_cai_data[[k]]<-rbind(data_s2,data_v2) |
|
477 |
} |
|
478 |
data_fus<-do.call(rbind.fill,list_fus_data) |
|
479 |
data_cai<-do.call(rbind.fill,list_cai_data) |
|
210 |
#boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
211 |
png(paste("ME_for_",names_methods[k],out_prefix,".png", sep="")) |
|
212 |
boxplot(tb_ME[,4:ncol(tb_MAE)],main=names_methods[k], |
|
213 |
ylab= "ME", outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
214 |
dev.off() |
|
480 | 215 |
|
481 |
data_fus_melt<-melt(data_fus, |
|
482 |
measure=c("x_OR83M","y_OR83M","res_fus","res_mod1","res_mod2","res_mod3","res_mod4","res_mod5","pred_fus","dailyTmax","TMax","LST","training"), |
|
483 |
id=c("id","date"), |
|
216 |
# OVER THE YEAR |
|
217 |
#... |
|
218 |
for(i in 1:nrow(tb)){ |
|
219 |
date<-tb$dates[i] |
|
220 |
date<-strptime(date, "%Y%m%d") |
|
221 |
tb$month[i]<-as.integer(strftime(date, "%m")) |
|
222 |
} |
|
223 |
# USE RESHAPE... |
|
224 |
mod_pat<-glob2rx("mod*") |
|
225 |
var_pat<-grep(mod_pat,names(tb),value=TRUE) # using grep with "value" extracts the matching names |
|
226 |
tb_melt<-melt(tb, |
|
227 |
measure=var_pat, |
|
228 |
id=c("metric","month"), |
|
484 | 229 |
na.rm=F) |
485 |
data_fus_cast<-cast(data_fus_melt,id+date~variable,mean) |
|
486 |
id1="USC00350036" |
|
487 |
id2="USW00004128" |
|
488 |
dat_id1<-subset(data_fus_cast,id==id1) |
|
489 |
dat_id2<-subset(data_fus_cast,id==id2) |
|
490 |
write.table(dat_id1,file=paste("station_",id1,".txt",sep=""),sep=",") |
|
491 |
#list_fus_data<-vector("list", 365) |
|
492 |
#list_cai_data<-vector("list", 365) |
|
493 |
|
|
494 |
test_dst<-list_dstspat_er |
|
495 |
test<-do.call(rbind,list_dstspat_er) |
|
496 |
|
|
497 |
for(i in 4:ncol(test)){ # start of the for loop #1 |
|
498 |
test[,i]<-as.numeric(as.character(test[,i])) |
|
230 |
tb_cast<-cast(tb_melt,metric+month~variable,mean) |
|
231 |
|
|
232 |
metrics<-as.character(unique(tb$metric)) #Name of accuracy metrics (RMSE,MAE etc.) |
|
233 |
tb_metric_list<-vector("list",length(metrics)) |
|
234 |
|
|
235 |
|
|
236 |
png(paste("MAE_for_",names_methods[k],out_prefix,".png", sep="")) |
|
237 |
boxplot(tb__m_MAE[,4:ncol(tb_MAE)],main=names_methods[k], ylim=c(1,3.5), |
|
238 |
ylab= "MAE", outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
239 |
dev.off() |
|
240 |
metrics<-as.character(unique(tb$metric)) #Name of accuracy metrics (RMSE,MAE etc.) |
|
241 |
tb_metric_list<-vector("list",length(metrics)) |
|
242 |
|
|
243 |
for(i in 1:length(metrics)){ # Reorganizing information in terms of metrics |
|
244 |
metric_name<-paste("tb_t_",metrics[i],sep="") |
|
245 |
tb_metric<-subset(tb, metric==metrics[i]) |
|
246 |
assign(metric_name,tb_metric) |
|
247 |
tb_metric_list[[i]]<-tb_metric |
|
248 |
} |
|
249 |
|
|
250 |
tb_processed<-tb_metric_list[[i]] |
|
251 |
mod_pat<-glob2rx("mod*") |
|
252 |
var_pat<-grep(mod_pat,names(tb_processed),value=FALSE) # using grep with "value" extracts the matching names |
|
253 |
na_mod<-colSums(!is.na(tb_processed[,var_pat])) |
|
254 |
for (j in 4:ncol(tb)){ |
|
255 |
if (na_mod[j-3]<183){ |
|
256 |
tb_ME<-tb_ME[,-j] #Remove columns that have too many missing values!!! |
|
257 |
} |
|
258 |
|
|
499 | 259 |
} |
500 | 260 |
|
501 |
# Plot results |
|
502 |
plot(test$dst,abs(test$res_mod_v)) |
|
503 |
limit<-seq(0,150, by=10) |
|
504 |
tmp<-cut(test$dst,breaks=limit) |
|
505 |
erd1<-tapply(test$res_mod_v,tmp, mean) |
|
506 |
erd2<-as.numeric(tapply(abs(test$res_mod_v),tmp, mean)) |
|
507 |
plot(erd2) |
|
508 |
|
|
509 |
erd1_mod1<-tapply(test$res_mod1,tmp, mean) |
|
510 |
erd2_mod1<-tapply(abs(test$res_mod1),tmp, mean) |
|
511 |
erd2_mod2<-tapply(abs(test$res_mod2),tmp, mean) |
|
512 |
erd2_mod3<-tapply(abs(test$res_mod3),tmp, mean) |
|
513 |
erd2_mod4<-tapply(abs(test$res_mod4),tmp, mean) |
|
514 |
erd2_mod5<-tapply(abs(test$res_mod5),tmp, mean) |
|
515 |
erd2_CAI<-tapply(abs(test$res_CAI),tmp, mean) |
|
516 |
n<-tapply(abs(test$res_mod1),tmp, length) |
|
517 |
distance<-seq(5,145,by=10) |
|
518 |
|
|
519 |
X11() |
|
520 |
plot(distance,erd2,ylim=c(1,4), type="b", col="red",ylab=" Average MAE", |
|
521 |
xlab="distance to closest training station (km)") |
|
522 |
lines(distance,erd2_mod1,col="black") |
|
523 |
lines(distance,erd2_mod2,col="green") |
|
524 |
lines(distance,erd2_mod3,col="blue") |
|
525 |
lines(distance,erd2_mod4,col="yellow") |
|
526 |
lines(distance,erd2_mod5,col="pink") |
|
527 |
lines(distance,erd2_CAI,col="grey") |
|
528 |
|
|
529 |
# add a title and subtitle |
|
530 |
title("MAE in terms of distance to closest station GAM and FUSION") |
|
531 |
|
|
532 |
#colused<- |
|
533 |
# add a legend |
|
534 |
#legend("bottomright",legend=1:(5), cex=1.2, col=colors, |
|
535 |
#pch=plotchar, lty=linetype, title="mod") |
|
536 |
savePlot(paste("Comparison_models_er_spat",out_prefix,".png", sep=""), type="png") |
|
537 |
dev.off() |
|
538 |
|
|
539 |
means <- erd2_CAI |
|
540 |
means2<- erd2 |
|
541 |
stdev <-tapply(abs(test$res_CAI),tmp, sd) |
|
542 |
stdev2 <-tapply(abs(test$res_mod_v),tmp, sd) |
|
543 |
|
|
544 |
ciw <- qt(0.975, n) * stdev / sqrt(n) |
|
545 |
ciw2 <- qt(0.975, n) * stdev2 / sqrt(n) |
|
546 |
|
|
547 |
X11() |
|
548 |
plotCI(y=means, x=distance, uiw=ciw, col="black", main=" CAI: MAE and distance to clostest training station", barcol="blue", lwd=1) |
|
549 |
lines(distance,erd2_CAI,col="grey") |
|
550 |
savePlot(paste("CI_CAI_er_spat_",out_prefix,".png", sep=""), type="png") |
|
551 |
dev.off() |
|
552 |
|
|
553 |
X11() |
|
554 |
plotCI(y=means2, x=distance, uiw=ciw2, col="black", main=" FUSION: MAE and distance to clostest training station", barcol="blue", lwd=1) |
|
555 |
lines(distance,erd2,col="black") |
|
556 |
savePlot(paste("CI_fusion_er_spat_",out_prefix,".png", sep=""), type="png") |
|
557 |
dev.off() |
|
558 |
|
|
559 |
X11() |
|
560 |
barplot(n,names.arg=as.character(distance)) |
|
561 |
savePlot(paste("Barplot_freq_er_spat_",out_prefix,".png", sep=""), type="png") |
|
562 |
dev.off() |
|
563 |
|
|
564 |
### Average MAE per station and coarse grid box (0.5 deg) |
|
565 |
|
|
566 |
test$abs_res_fus<-abs(test$res_mod_v) |
|
567 |
test$abs_res_CAI<-abs(test$res_CAI) |
|
568 |
|
|
569 |
station_melt<-melt(test, |
|
570 |
measure=c("x_OR83M","y_OR83M","res_mod_v","res_mod1","res_mod2","res_mod3","res_mod4","res_mod5","abs_res_fus","abs_res_CAI"), |
|
571 |
id=c("v_id"), |
|
572 |
na.rm=F) |
|
573 |
station_v_er<-cast(station_melt,v_id~variable,mean) |
|
574 |
#station_v_er2<-as.data.frame(station_v_er) |
|
575 |
station_v_er<-as.data.frame(station_v_er) |
|
576 |
oc<-vector("numeric",nrow(station_v_er)) |
|
577 |
oc<-oc+1 |
|
578 |
station_v_er$oc<-oc |
|
579 |
|
|
580 |
unique(ghcn$id) |
|
581 |
|
|
582 |
coords<- station_v_er[,c('x_OR83M','y_OR83M')] |
|
583 |
coordinates(station_v_er)<-coords |
|
584 |
proj4string(station_v_er)<-CRS #Need to assign coordinates... |
|
585 |
|
|
586 |
bubble(station_v_er,"abs_res_fus") |
|
587 |
|
|
588 |
rast_agg<-aggregate(raster_pred,fact=50,fun=mean,na.rm=TRUE) #Changing the raster resolution by aggregation factor |
|
589 |
rast_MAE_fus<-rasterize(station_v_er,rast_agg,"abs_res_fus",na.rm=TRUE,fun=mean) |
|
590 |
rast_MAE_CAI<-rasterize(station_v_er,rast_agg,"abs_res_CAI",na.rm=TRUE,fun=mean) |
|
591 |
rast_oc<-rasterize(station_v_er,rast_agg,"oc",na.rm=TRUE,fun=sum) |
|
592 |
ac_agg50<-as.data.frame(values(rast_oc)) |
|
593 |
ac_agg50$MAE_fus<-as.numeric(values(rast_MAE_fus)) |
|
594 |
ac_agg50$MAE_CAI<-as.numeric(values(rast_MAE_CAI)) |
|
595 |
names(ac_agg50)<-c("oc","MAE_fus","MAE_CAI") |
|
596 |
|
|
597 |
ghcn_sub<-as.data.frame(subset(ghcn, select=c("station","x_OR83M","y_OR83M"))) |
|
598 |
ghcn_sub_melt<-melt(ghcn_sub, |
|
599 |
measure=c("x_OR83M","y_OR83M"), |
|
600 |
id=c("station"), |
|
601 |
na.rm=F) |
|
602 |
ghcn_stations<-as.data.frame(cast(ghcn_sub_melt,station~variable,mean)) |
|
603 |
coords<- ghcn_stations[,c('x_OR83M','y_OR83M')] |
|
604 |
coordinates(ghcn_stations)<-coords |
|
605 |
proj4string(ghcn_stations)<-CRS #Need to assign coordinates... |
|
606 |
oc_all<-vector("numeric",nrow(ghcn_stations)) |
|
607 |
oc_all<-oc_all+1 |
|
608 |
|
|
609 |
ghcn_stations$oc_all<-oc_all |
|
610 |
rast_oc_all<-rasterize(ghcn_stations,rast_agg,"oc_all",na.rm=TRUE,fun=sum) |
|
611 |
ac_agg50$oc_all<-values(rast_oc_all) |
|
612 |
|
|
613 |
td1<-aggregate(MAE_fus~oc,data=ac_agg50,mean) |
|
614 |
td2<-aggregate(MAE_CAI~oc,data=ac_agg50,mean) |
|
615 |
td<-merge(td1,td2,by="oc") |
|
616 |
|
|
617 |
td1_all<-aggregate(MAE_fus~oc_all,data=ac_agg50,mean) |
|
618 |
td2_all<-aggregate(MAE_CAI~oc_all,data=ac_agg50,mean) |
|
619 |
td_all<-merge(td1_all,td2_all,by="oc_all") |
|
620 |
|
|
621 |
plot(MAE_fus~oc,data=td,type="b") |
|
622 |
lines(td$oc,td$MAE_CAI, type="b", lwd=1.5,co="red") |
|
623 |
plot(MAE_fus~oc_all,data=td_all,type="b") |
|
624 |
lines(td_all$oc_all,td_all$MAE_CAI, type="b", lwd=1.5,co="red") |
|
625 |
|
|
626 |
filename<-sub(".shp","",infile6) #Removing the extension from file. |
|
627 |
reg_outline<-readOGR(".", filename) #reading shapefile |
|
628 |
plot(rast_MAE_fus, main="Fusion MAE in coarsened 50km grid") |
|
629 |
plot(reg_outline, add=TRUE) |
|
630 |
|
|
631 |
plot(rast_MAE_CAI, main="CAI MAE in coarsened 50km grid") |
|
632 |
plot(reg_outline, add=TRUE) |
|
633 |
|
|
634 |
plot(rast_oc, main="Number of val stations in coarsened 50km grid") |
|
635 |
plot(reg_outline, add=TRUE) |
|
636 |
plot(rast_oc_all, main="Number of stations in coarsened 50km grid") |
|
637 |
plot(reg_outline, add=TRUE) |
|
638 |
|
|
639 |
list_var_stat<-vector("list", 365) |
|
640 |
#list_var_stat<-vector("list", 2) |
|
641 |
#k=2 |
|
642 |
for (k in 1:length(l_f)){ |
|
643 |
|
|
644 |
raster_pred<-raster(l_f[[k]]) |
|
645 |
layerNames(raster_pred)<-"fus" |
|
646 |
projection(raster_pred)<-proj_str |
|
647 |
|
|
648 |
raster_pred2<-raster(l_f2[[k]]) |
|
649 |
layerNames(raster_pred2)<-"fus" |
|
650 |
projection(raster_pred2)<-proj_str |
|
651 |
|
|
652 |
tmp_rast<-mask(raster_pred2,raster_pred) |
|
653 |
|
|
654 |
t1<-cellStats(raster_pred,na.rm=TRUE,stat=sd) |
|
655 |
t2<-cellStats(raster_pred2,na.rm=TRUE,stat=sd) |
|
656 |
t2_b<-cellStats(tmp_rast,na.rm=TRUE,stat=sd) |
|
657 |
|
|
658 |
m1<-Moran(raster_pred,w=3) |
|
659 |
m2<-Moran(tmp_rast,w=3) |
|
660 |
stat<-as.data.frame(t(c(m1,m2,t1,t2))) |
|
661 |
names(stat)<-c("moran_fus","moran_CAI","sd_fus","sd_CAI") |
|
662 |
list_var_stat[[k]]<-stat |
|
261 |
mod_formulas<-vector("list",length(method_mod)) |
|
262 |
for(k in 1:length(method_mod)){ # start of the for main loop to all methods |
|
263 |
models_tmp<-method_mod[[k]][[1]][[5]] #day 1 for model k |
|
264 |
list_formulas<-vector("list",length(models_tmp)) |
|
265 |
for (j in 1:length(models_tmp)){ # |
|
266 |
formula<-try(formula(models_tmp[[j]])) |
|
267 |
list_formulas[[j]]<-formula |
|
268 |
} |
|
269 |
names(list_formulas)<-names(models_tmp) |
|
270 |
mod_formulas[[k]]<-list_formulas |
|
663 | 271 |
} |
664 | 272 |
|
665 |
var_stat<-do.call(rbind,list_var_stat) |
|
666 |
|
|
667 |
|
|
668 |
pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "value" |
|
669 |
elev<-raster(s_raster,layer=pos) #Select layer from stack |
|
670 |
elev<-mask(elev,raster_pred) |
|
671 |
te<-cellStats(elev,na.rm=TRUE,stat=sd) |
|
672 |
|
|
673 |
pos<-match("mm_12",layerNames(s_raster)) #Find column with name "value" |
|
674 |
m_12<-raster(s_raster,layer=pos) #Select layer from stack |
|
675 |
m_LST<-Moran(m_12,w=3) |
|
676 |
m_e<-Moran(elev,w=3) |
|
677 |
m_12<-m_12-273.15 |
|
678 |
plot(MAE_fus~oc,data=td,type="b") |
|
679 |
lines(td$oc,td$MAE_CAI, type="b", lwd=1.5,co="red") |
|
273 |
names(method_mean)<-obj_names |
|
274 |
#Add summary mean graphs!! HERE |
|
680 | 275 |
|
681 |
data_dist<-as.data.frame(cbind(distance,erd2,erd2_mod1,erd2_mod2,erd2_mod3,erd2_mod4,erd2_mod5,erd2_CAI,n))
|
|
682 |
rownames(data_dist)<-NULL
|
|
276 |
write.table(as.data.frame(method_mean$gam_fus_mod1$MAE), "methods_mean_gam_MAE_test1.txt", sep=",")
|
|
277 |
write.table(as.data.frame(method_mean$fus_CAI$MAE), "methods_mean_fus_CAI_MAE_test1.txt", sep=",")
|
|
683 | 278 |
|
684 |
#PLOTING CAI AND FUSION TO COMPARE
|
|
279 |
######### Average per month
|
|
685 | 280 |
|
686 |
infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
687 |
dates2<-read.table(paste(path,"/",infile2,sep=""), sep="") #Column 1 contains the names of raster files |
|
688 |
date_list2<-as.list(as.character(dates2[,1])) |
|
281 |
#Add code here... |
|
282 |
gam_fus_mod1<-method_mod[[1]] |
|
689 | 283 |
|
690 | 284 |
|
691 |
for (k in 1:length(date_list2)){ |
|
692 |
|
|
693 |
date_proc2<-date_list2[[k]] |
|
694 |
#date_proc<-date_list[[k]] |
|
695 |
index<-match(as.character(date_proc2),unlist(date_list)) #find the correct date... in the 365 stack |
|
696 |
#raster_pred<-raster(rp_raster,index) |
|
697 |
raster_pred1<-raster(l_f[[index]]) |
|
698 |
projection(raster_pred1)<-proj_str |
|
699 |
raster_pred1<-mask(raster_pred1,mask_land_NA) |
|
700 |
|
|
701 |
raster_pred2<-raster(l_f2[[index]]) |
|
702 |
projection(raster_pred2)<-proj_str |
|
703 |
raster_pred2<-mask(raster_pred2,mask_land_NA) |
|
704 |
|
|
705 |
predictions <- stack(raster_pred1,raster_pred2) |
|
706 |
layerNames(predictions)<-c(paste('fusion',date_list2[[k]],sep=" "),paste('CAI',date_list2[[k]],sep=" ")) |
|
707 |
# use overall min and max values to generate an nice, consistent set |
|
708 |
# of breaks for both colors (50 values) and legend labels (5 values) |
|
709 |
s.range <- c(min(minValue(predictions)), max(maxValue(predictions))) |
|
710 |
col.breaks <- pretty(s.range, n=50) |
|
711 |
lab.breaks <- pretty(s.range, n=5) |
|
712 |
temp.colors <- colorRampPalette(c('blue', 'white', 'red')) |
|
713 |
|
|
714 |
# plot using these (common) breaks; note use of _reverse_ heat.colors, |
|
715 |
# making it so that larger numbers are redder |
|
716 |
X11(6,12) |
|
717 |
#plot(predictions, breaks=col.breaks, col=rev(heat.colors(length(col.breaks)-1)), |
|
718 |
# axis=list(at=lab.breaks, labels=lab.breaks)) |
|
719 |
plot(predictions, breaks=col.breaks, col=temp.colors(length(col.breaks)-1), |
|
720 |
axis=list(at=lab.breaks, labels=lab.breaks)) |
|
721 |
|
|
722 |
savePlot(paste("comparison_raster1_CAI_fusion_tmax_prediction_",date_list2[[k]],out_prefix,".png", sep=""), type="png") |
|
723 |
diff<-raster_pred1-raster_pred2 |
|
724 |
s.range <- c(min(minValue(dif)), max(maxValue(d))) |
|
725 |
|
|
726 |
plot(diff,col=temp.colors(50)) |
|
727 |
savePlot(paste("comparison_raster1_diff_CAI_fusion_tmax_prediction_",date_list2[[k]],out_prefix,".png", sep=""), type="png") |
|
728 |
|
|
729 |
|
|
730 |
|
|
731 |
#hist(predictions, freq=FALSE,maxpixels=ncells(predictions)) |
|
732 |
hist(predictions, breaks=col.breaks,freq=FALSE,maxpixels=ncells(predictions)) |
|
733 |
savePlot(paste("comparison_histo_CAI_fusion_tmax_prediction_",date_list2[[k]],out_prefix,".png", sep=""), type="png") |
|
734 |
#plot(predictions) |
|
735 |
dev.off() |
|
736 |
|
|
737 |
} |
|
738 |
|
|
739 |
|
|
740 |
write.table(data_dist,file=paste("data_dist_",out_prefix,".txt",sep=""),sep=",") |
|
741 |
write.table(test,file=paste("ac_spat_dist",out_prefix,".txt",sep=""),sep=",") |
|
742 |
write.table(var_stat,file=paste("moran_var_stat_",out_prefix,".txt",sep=""),sep=",") |
|
743 |
write.table(td,file=paste("MAE_density_station_",out_prefix,".txt",sep=""),sep=",") |
|
744 |
write.table(td_all,file=paste("MAE_density_station_all_",out_prefix,".txt",sep=""),sep=",") |
|
745 |
|
|
285 |
##################### PART II ####################### |
|
746 | 286 |
# VISUALIZATION OF RESULTS PLOTS ACROSS MODELS FOR METHODS |
747 | 287 |
|
748 | 288 |
date_selected<-"20100103" |
749 | 289 |
|
750 |
lf_gwr<-list.files(pattern=paste("*",date_selected,".*08152012_1d_gwr4.rst$",sep="")) |
|
751 | 290 |
lf_krig<-list.files(pattern=paste("*",date_selected,"_07312012_365d_Kriging_autokrig2.rst$",sep="")) |
752 |
lf_gam<-list.files(pattern=paste("^GAM.*",date_selected,"_07242012_365d_GAM_fusion5.rst$",sep="")) |
|
753 |
lf_fus<-list.files(pattern=paste("^fusion_tmax.*",date_selected,"_07242012_365d_GAM_fusion5.rst$",sep="")) #Search for files in relation to fusion |
|
754 |
lf_cai<-list.files(pattern=paste("*CAI_tmax_pred.*",date_selected,"*.08072012_365d_GAM_CAI2.rst$",sep="")) #Search for files in relation to fusion |
|
291 |
lf_gwr<-list.files(pattern=paste("*",date_selected,".*08152012_1d_gwr4.rst$",sep="")) |
|
292 |
lf_gam1<-list.files(pattern=paste("^GAM.*",date_selected,"_07242012_365d_GAM_fusion5.rst$",sep="")) |
|
293 |
lf_fus1<-list.files(pattern=paste("*.tmax_predicted.*.",date_selected,".*._365d_GAM_fusion_lstd_10062012.rst$",sep="")) |
|
294 |
lf_cai1<-list.files(pattern=paste("*CAI_tmax_pred.*",date_selected,"*.08072012_365d_GAM_CAI2.rst$",sep="")) #Search for files in relation to fusion |
|
755 | 295 |
lf_gam2<-list.files(pattern=paste("^GAM.*",date_selected,"_08122012_365d_GAM_fusion6.rst$",sep="")) |
756 | 296 |
|
757 |
d_gwr_rast<-stack(lf_gwr) |
|
297 |
#lf2_fus<-list.files(pattern=paste("*",date_selected,"*._365d_GAM_fusion_lstd_10062012.rst$",sep="")) |
|
298 |
#lf2_fus<-list.files(pattern=paste("*.20100103.*._365d_GAM_fusion_lstd_10062012.rst$",sep="")) |
|
299 |
lf2_fus<-list.files(pattern=paste("^fusion_tmax.*",date_selected,"_07242012_365d_GAM_fusion5.rst$",sep="")) #Search for files in relation to fusion |
|
300 |
|
|
301 |
|
|
758 | 302 |
d_krig_rast<-stack(lf_krig) |
759 |
d_gam_rast<-stack(lf_gam) |
|
760 |
d_fus_rast<-stack(lf_fus) |
|
761 |
d_cai_rast<-stack(lf_cai) |
|
303 |
d_gwr_rast<-stack(lf_gwr) |
|
304 |
d_gam1_rast<-stack(lf_gam1) |
|
305 |
d_fus1_rast<-stack(lf_fus1) |
|
306 |
d_cai1_rast<-stack(lf_cai1) |
|
762 | 307 |
d_gam2_rast<-stack(lf_gam2) |
763 | 308 |
|
764 |
list_day_method<-list(d_gwr_rast,d_krig_rast,d_gam_rast,d_fus_rast,d_cai_rast,d_gam2_rast)
|
|
765 |
names(list_day_method)<-paste(c("gwr_","krig_","gam1_","fus_","cai_","gam2_"),date_selected,sep="")
|
|
766 |
out_prefix2<-"_10042012"
|
|
309 |
list_day_method<-list(d_krig_rast,d_gwr_rast,d_gam1_rast,d_fus1_rast,d_cai1_rast,d_gam2_rast)
|
|
310 |
names(list_day_method)<-paste(c("krig_","gwr_","gam1_","fus1_","cai1_","gam2_"),date_selected,sep="")
|
|
311 |
out_prefix2<-"_10172012"
|
|
767 | 312 |
|
768 | 313 |
for (k in 1:length(list_day_method)){ |
769 | 314 |
|
770 | 315 |
predictions<-list_day_method[[k]] |
771 | 316 |
projection(predictions)<-proj_str |
772 |
predictions<-mask(predictions,mask_land_NA)
|
|
317 |
predictions<-mask(predictions,mask_elev_NA)
|
|
773 | 318 |
#layerNames(predictions)<-c(paste('fusion',date_selected,sep=" "),paste('CAI',date_list2[[k]],sep=" ")) |
774 | 319 |
# use overall min and max values to generate an nice, consistent set |
775 | 320 |
# of breaks for both colors (50 values) and legend labels (5 values) |
776 |
s.range <- c(min(minValue(predictions)), max(maxValue(predictions))) |
|
321 |
#s.range <- c(min(minValue(predictions)), max(maxValue(predictions)))
|
|
777 | 322 |
s.range<-c(-12,18) |
778 | 323 |
col.breaks <- pretty(s.range, n=60) |
779 | 324 |
lab.breaks <- pretty(s.range, n=6) |
... | ... | |
789 | 334 |
dev.off() |
790 | 335 |
} |
791 | 336 |
|
337 |
|
|
338 |
##PLOTING OF ONE DATE TO COMPARE METHODS!!! |
|
339 |
|
|
340 |
pos<-match("ELEV_SRTM",layerNames(s_raster)) |
|
341 |
ELEV_SRTM<-raster(s_raster,pos) |
|
342 |
elev<-ELEV_SRTM |
|
343 |
elev[-0.050<elev]<-NA #Remove all negative elevation lower than 50 meters... |
|
344 |
|
|
345 |
mask_elev_NA<-elev> (-0.050) |
|
346 |
|
|
347 |
date_selected<-"20100103" |
|
348 |
lf_fus<-list.files(pattern=paste("^fusion_tmax.*",date_selected,"_07242012_365d_GAM_fusion5.rst$",sep="")) #Search for files in relation to fusion |
|
349 |
lf_cai<-list.files(pattern=paste("*CAI_tmax_pred.*",date_selected,"*.08072012_365d_GAM_CAI2.rst$",sep="")) #Search for files in relation to fusion |
|
350 |
|
|
351 |
r11<-raster(lf_fus) #Fusion |
|
352 |
r12<-raster(lf_cai[1]) #CAI |
|
353 |
predictions<-stack(r11,r12) |
|
354 |
predictions<-mask(predictions,mask_land_elev_NA) |
|
355 |
layerNames(predictions)<-c(paste('fusion',"20100103",sep=" "),paste('CAI',"20100103",sep=" ")) |
|
356 |
|
|
357 |
s.range <- c(min(minValue(predictions)), max(maxValue(predictions))) |
|
358 |
col.breaks <- pretty(s.range, n=50) |
|
359 |
lab.breaks <- pretty(s.range, n=5) |
|
360 |
temp.colors <- colorRampPalette(c('blue', 'white', 'red')) |
|
361 |
|
|
362 |
# plot using these (common) breaks; note use of _reverse_ heat.colors, |
|
363 |
# making it so that larger numbers are redder |
|
364 |
X11(6,12) |
|
365 |
#plot(predictions, breaks=col.breaks, col=rev(heat.colors(length(col.breaks)-1)), |
|
366 |
# axis=list(at=lab.breaks, labels=lab.breaks)) |
|
367 |
plot(predictions, breaks=col.breaks, col=temp.colors(length(col.breaks)-1), |
|
368 |
axis=list(at=lab.breaks, labels=lab.breaks)) |
|
369 |
#plot(reg_outline, add=TRUE) |
|
370 |
savePlot(paste("comparison_one_date_CAI_fusion_tmax_prediction_",date_selected,out_prefix,".png", sep=""),type="png") |
|
371 |
|
|
372 |
#results2_fusion_Assessment_measure_all_365d_GAM_fusion_lstd_10062012.RData |
|
792 | 373 |
#### END OF THE SCRIPT |
Also available in: Unified diff
Method comp part1 -task#491, major clean up, production of boxplots and visual maps