Project

General

Profile

Download (22.5 KB) Statistics
| Branch: | Revision:
1
<!DOCTYPE html>
2
<!-- saved from url=(0014)about:internet -->
3
<html>
4
<head>
5
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
6
<meta http-equiv="x-ua-compatible" content="IE=9" >
7

    
8
<title>LST Climatology Evaluation</title>
9

    
10
<style type="text/css">
11
body, td {
12
   font-family: sans-serif;
13
   background-color: white;
14
   font-size: 12px;
15
   margin: 8px;
16
}
17

    
18
tt, code, pre {
19
   font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
20
}
21

    
22
h1 { 
23
   font-size:2.2em; 
24
}
25

    
26
h2 { 
27
   font-size:1.8em; 
28
}
29

    
30
h3 { 
31
   font-size:1.4em; 
32
}
33

    
34
h4 { 
35
   font-size:1.0em; 
36
}
37

    
38
h5 { 
39
   font-size:0.9em; 
40
}
41

    
42
h6 { 
43
   font-size:0.8em; 
44
}
45

    
46
a:visited {
47
   color: rgb(50%, 0%, 50%);
48
}
49

    
50
pre {	
51
   margin-top: 0;
52
   max-width: 95%;
53
   border: 1px solid #ccc;
54
   white-space: pre-wrap;
55
}
56

    
57
pre code {
58
   display: block; padding: 0.5em;
59
}
60

    
61
code.r, code.cpp {
62
   background-color: #F8F8F8;
63
}
64

    
65
table, td, th {
66
  border: none;
67
}
68

    
69
blockquote {
70
   color:#666666;
71
   margin:0;
72
   padding-left: 1em;
73
   border-left: 0.5em #EEE solid;
74
}
75

    
76
hr {
77
   height: 0px;
78
   border-bottom: none;
79
   border-top-width: thin;
80
   border-top-style: dotted;
81
   border-top-color: #999999;
82
}
83

    
84
@media print {
85
   * { 
86
      background: transparent !important; 
87
      color: black !important; 
88
      filter:none !important; 
89
      -ms-filter: none !important; 
90
   }
91

    
92
   body { 
93
      font-size:12pt; 
94
      max-width:100%; 
95
   }
96
       
97
   a, a:visited { 
98
      text-decoration: underline; 
99
   }
100

    
101
   hr { 
102
      visibility: hidden;
103
      page-break-before: always;
104
   }
105

    
106
   pre, blockquote { 
107
      padding-right: 1em; 
108
      page-break-inside: avoid; 
109
   }
110

    
111
   tr, img { 
112
      page-break-inside: avoid; 
113
   }
114

    
115
   img { 
116
      max-width: 100% !important; 
117
   }
118

    
119
   @page :left { 
120
      margin: 15mm 20mm 15mm 10mm; 
121
   }
122
     
123
   @page :right { 
124
      margin: 15mm 10mm 15mm 20mm; 
125
   }
126

    
127
   p, h2, h3 { 
128
      orphans: 3; widows: 3; 
129
   }
130

    
131
   h2, h3 { 
132
      page-break-after: avoid; 
133
   }
134
}
135

    
136
</style>
137

    
138
<!-- Styles for R syntax highlighter -->
139
<style type="text/css">
140
   pre .operator,
141
   pre .paren {
142
     color: rgb(104, 118, 135)
143
   }
144

    
145
   pre .literal {
146
     color: rgb(88, 72, 246)
147
   }
148

    
149
   pre .number {
150
     color: rgb(0, 0, 205);
151
   }
152

    
153
   pre .comment {
154
     color: rgb(76, 136, 107);
155
   }
156

    
157
   pre .keyword {
158
     color: rgb(0, 0, 255);
159
   }
160

    
161
   pre .identifier {
162
     color: rgb(0, 0, 0);
163
   }
164

    
165
   pre .string {
166
     color: rgb(3, 106, 7);
167
   }
168
</style>
169

    
170
<!-- R syntax highlighter -->
171
<script type="text/javascript">
172
var hljs=new function(){function m(p){return p.replace(/&/gm,"&amp;").replace(/</gm,"&lt;")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
173
hljs.initHighlightingOnLoad();
174
</script>
175

    
176

    
177

    
178

    
179
</head>
180

    
181
<body>
182
<h1>LST Climatology Evaluation</h1>
183

    
184
<h3>Adam M. Wilson (Compiled on Tue Mar  4 14:31:08 2014  using code version (git hash): f41365c)</h3>
185

    
186
<p>A short script to visualize and explore the updated Land Surface Climatology algorithm that &#39;lowers the standards&#39; in some areas to increase the number of available observations.  </p>
187

    
188
<h2>Download data from ECOcast and convert to raster stacks</h2>
189

    
190
<pre><code class="r">download = F
191
if (download) system(&quot;wget -e robots=off -L -r -np -nd -p 20140304_LST -nc -A tif http://ecocast.arc.nasa.gov/data/pub/climateLayers/LST_new/&quot;)
192

    
193
## organize file names
194
f = data.frame(full = T, path = list.files(&quot;20140304_LST&quot;, pattern = &quot;tif$&quot;, 
195
    full = T), stringsAsFactors = F)
196
f$month = as.numeric(do.call(rbind, strsplit(basename(f$path), &quot;_|[.]&quot;))[, 7])
197
f$type = do.call(rbind, strsplit(basename(f$path), &quot;_|[.]&quot;))[, 1]
198
f = f[order(f$month), ]
199
f$mn = month.name[f$month]
200

    
201
## create raster stacks
202
lst_mean = stack(f$path[f$type == &quot;mean&quot;])
203
names(lst_mean) = f$mn[f$type == &quot;mean&quot;]
204
NAvalue(lst_mean) = 0
205

    
206
lst_nobs = stack(f$path[f$type == &quot;nobs&quot;])
207
names(lst_nobs) = f$mn[f$type == &quot;nobs&quot;]
208

    
209
lst_qa = stack(f$path[f$type == &quot;qa&quot;])
210
names(lst_qa) = f$mn[f$type == &quot;qa&quot;]
211

    
212
## define a function to summarize data
213
fst = function(x, na.rm = T) c(mean = mean(x, na.rm = T), min = min(x, na.rm = T), 
214
    max = max(x, na.rm = T))
215
rfst = function(r) cellStats(r, fst)
216
</code></pre>
217

    
218
<h2>Mean Monthly LST</h2>
219

    
220
<p>Map of LST by month (with white indicating missing data).  Note that many inland regions have missing data (white) in some months (mostly winter).</p>
221

    
222
<pre><code class="r">colramp = colorRampPalette(c(&quot;blue&quot;, &quot;orange&quot;, &quot;red&quot;))
223
dt_mean = rfst(lst_mean)
224
levelplot(lst_mean, col.regions = c(colramp(99)), at = seq(0, 65, len = 99), 
225
    main = &quot;Mean Land Surface Temperature&quot;, sub = &quot;Tile H08v05 (California and Northern Mexico)&quot;)
226
</code></pre>
227

    
228
<p><img src="http://i.imgur.com/LTEp1xT.png" alt="plot of chunk unnamed-chunk-4"/> </p>
229

    
230
<p>Table of mean, min, and maximum LST for this tile by month.</p>
231

    
232
<pre><code class="r">print(xtable(dt_mean), type = &quot;html&quot;)
233
</code></pre>
234

    
235
<!-- html table generated in R 3.0.2 by xtable 1.7-1 package -->
236

    
237
<!-- Tue Mar  4 14:19:55 2014 -->
238

    
239
<TABLE border=1>
240
<TR> <TH>  </TH> <TH> January </TH> <TH> February </TH> <TH> March </TH> <TH> April </TH> <TH> May </TH> <TH> June </TH> <TH> July </TH> <TH> August </TH> <TH> September </TH> <TH> October </TH> <TH> November </TH> <TH> December </TH>  </TR>
241
  <TR> <TD align="right"> mean </TD> <TD align="right"> 15.01 </TD> <TD align="right"> 18.41 </TD> <TD align="right"> 25.81 </TD> <TD align="right"> 32.05 </TD> <TD align="right"> 39.49 </TD> <TD align="right"> 44.18 </TD> <TD align="right"> 44.70 </TD> <TD align="right"> 41.96 </TD> <TD align="right"> 38.59 </TD> <TD align="right"> 30.84 </TD> <TD align="right"> 21.77 </TD> <TD align="right"> 14.33 </TD> </TR>
242
  <TR> <TD align="right"> min </TD> <TD align="right"> 1.43 </TD> <TD align="right"> 1.98 </TD> <TD align="right"> 1.08 </TD> <TD align="right"> 1.28 </TD> <TD align="right"> 2.37 </TD> <TD align="right"> 5.03 </TD> <TD align="right"> 12.04 </TD> <TD align="right"> 12.96 </TD> <TD align="right"> 12.72 </TD> <TD align="right"> 6.90 </TD> <TD align="right"> 2.77 </TD> <TD align="right"> 2.76 </TD> </TR>
243
  <TR> <TD align="right"> max </TD> <TD align="right"> 31.31 </TD> <TD align="right"> 36.74 </TD> <TD align="right"> 45.88 </TD> <TD align="right"> 52.29 </TD> <TD align="right"> 58.66 </TD> <TD align="right"> 60.88 </TD> <TD align="right"> 61.15 </TD> <TD align="right"> 60.99 </TD> <TD align="right"> 57.07 </TD> <TD align="right"> 48.82 </TD> <TD align="right"> 39.17 </TD> <TD align="right"> 29.42 </TD> </TR>
244
   </TABLE>
245

    
246
<h3>Boxplot of Monthly Mean LST</h3>
247

    
248
<pre><code class="r">lst_tmean = melt(unlist(as.matrix(lst_mean)))
249
colnames(lst_tmean) = c(&quot;cell&quot;, &quot;month&quot;, &quot;value&quot;)
250
lst_tmean = lst_tmean[!is.na(lst_tmean$value), ]
251
lst_tmean$month = factor(lst_tmean$month, levels = month.name, ordered = T)
252
bwplot(value ~ month, data = lst_tmean, ylab = &quot;Mean LST (c)&quot;, xlab = &quot;Month&quot;)
253
</code></pre>
254

    
255
<p><img src="http://i.imgur.com/5Knr2zX.png" alt="plot of chunk unnamed-chunk-6"/> </p>
256

    
257
<h2>Total number of available observations</h2>
258

    
259
<p>This section details the spatial and temporal distribution of the number of LST observations that were not masked by quality control (see section below).  Note that the regions with no data in the map above have missing data (nobs=0) here as well, but also the areas surrounding those regions have low numbers of observations in some months (blue colors).  </p>
260

    
261
<pre><code class="r">dt_nobs = rfst(lst_nobs)
262
levelplot(lst_nobs, col.regions = c(&quot;grey&quot;, colramp(99)), at = c(-0.5, 0.5, 
263
    seq(1, 325, len = 99)), main = &quot;Sum Available Observations&quot;, sub = &quot;Tile H08v05 (California and Northern Mexico) \n Grey indicates zero observations&quot;)
264
</code></pre>
265

    
266
<p><img src="http://i.imgur.com/n7HfvPt.png" alt="plot of chunk unnamed-chunk-7"/> </p>
267

    
268
<p>Table of mean, min, and maximum number of observations for this tile by month.</p>
269

    
270
<!-- html table generated in R 3.0.2 by xtable 1.7-1 package -->
271

    
272
<!-- Tue Mar  4 14:21:49 2014 -->
273

    
274
<TABLE border=1>
275
<TR> <TH>  </TH> <TH> January </TH> <TH> February </TH> <TH> March </TH> <TH> April </TH> <TH> May </TH> <TH> June </TH> <TH> July </TH> <TH> August </TH> <TH> September </TH> <TH> October </TH> <TH> November </TH> <TH> December </TH>  </TR>
276
  <TR> <TD align="right"> mean </TD> <TD align="right"> 107.97 </TD> <TD align="right"> 100.06 </TD> <TD align="right"> 140.35 </TD> <TD align="right"> 152.19 </TD> <TD align="right"> 177.02 </TD> <TD align="right"> 178.22 </TD> <TD align="right"> 156.86 </TD> <TD align="right"> 169.87 </TD> <TD align="right"> 180.29 </TD> <TD align="right"> 167.68 </TD> <TD align="right"> 136.12 </TD> <TD align="right"> 102.86 </TD> </TR>
277
  <TR> <TD align="right"> min </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> <TD align="right"> 0.00 </TD> </TR>
278
  <TR> <TD align="right"> max </TD> <TD align="right"> 272.00 </TD> <TD align="right"> 238.00 </TD> <TD align="right"> 281.00 </TD> <TD align="right"> 293.00 </TD> <TD align="right"> 319.00 </TD> <TD align="right"> 304.00 </TD> <TD align="right"> 319.00 </TD> <TD align="right"> 324.00 </TD> <TD align="right"> 310.00 </TD> <TD align="right"> 305.00 </TD> <TD align="right"> 271.00 </TD> <TD align="right"> 260.00 </TD> </TR>
279
   </TABLE>
280

    
281
<h3>Boxplot of Number of Observations</h3>
282

    
283
<p>The seasonal cycle of missing data is quite noisy, though there tend to be fewer observations in winter months (DJF).  </p>
284

    
285
<pre><code class="r">lst_tnobs = melt(unlist(as.matrix(lst_nobs)))
286
colnames(lst_tnobs) = c(&quot;cell&quot;, &quot;month&quot;, &quot;value&quot;)
287
lst_tnobs = lst_tnobs[!is.na(lst_tnobs$value), ]
288
lst_tnobs$month = factor(lst_tnobs$month, levels = month.name, ordered = T)
289
bwplot(value ~ month, data = lst_tnobs, ylab = &quot;Number of availble observations&quot;, 
290
    xlab = &quot;Month&quot;)
291
</code></pre>
292

    
293
<p><img src="http://i.imgur.com/G9g9qQw.png" alt="plot of chunk unnamed-chunk-9"/> </p>
294

    
295
<h2>Quality Assessment level used</h2>
296

    
297
<p>Map of the Quality Assessment (QA) level used to fill the pixels. It goes from 0 (highest quality) to 3(low). For h08v05 all pixels are filled with either 0 or 1. So red indicates areas with the lower quality data (most of the tile).</p>
298

    
299
<pre><code class="r">levelplot(lst_qa, col.regions = c(&quot;grey&quot;, &quot;red&quot;), at = c(-0.5, 0.5, 1.5), cuts = 2, 
300
    main = &quot;Quality Assessment Filter&quot;, sub = &quot;Tile H08v05 (California and Northern Mexico)&quot;)
301
</code></pre>
302

    
303
<p><img src="http://i.imgur.com/LWLYRXJ.png" alt="plot of chunk unnamed-chunk-10"/> </p>
304

    
305
<p>Proportion of cells in each month with QA=1 (including cells in the Pacific Ocean)</p>
306

    
307
<!-- html table generated in R 3.0.2 by xtable 1.7-1 package -->
308

    
309
<!-- Tue Mar  4 14:23:35 2014 -->
310

    
311
<TABLE border=1>
312
<TR> <TH>  </TH> <TH> January </TH> <TH> February </TH> <TH> March </TH> <TH> April </TH> <TH> May </TH> <TH> June </TH> <TH> July </TH> <TH> August </TH> <TH> September </TH> <TH> October </TH> <TH> November </TH> <TH> December </TH>  </TR>
313
  <TR> <TD align="right"> ProportionQA_1 </TD> <TD align="right"> 0.47 </TD> <TD align="right"> 0.47 </TD> <TD align="right"> 0.42 </TD> <TD align="right"> 0.40 </TD> <TD align="right"> 0.38 </TD> <TD align="right"> 0.37 </TD> <TD align="right"> 0.42 </TD> <TD align="right"> 0.40 </TD> <TD align="right"> 0.38 </TD> <TD align="right"> 0.38 </TD> <TD align="right"> 0.43 </TD> <TD align="right"> 0.47 </TD> </TR>
314
   </TABLE>
315

    
316
<h2>Questions</h2>
317

    
318
<p>A few open questions/comments (in my mind):</p>
319

    
320
<ol>
321
<li>Why are there only two QA classes for this tile (0 and 1) rather than 4 (0-3)?  There are still missing data in some months, is the plan to do it or was there another reason to not consider all classes for this tile?</li>
322
<li>How exactly are the different QA levels selected?  If QA=0 results in &lt;33 obs, go to QA=1, etc.?<br/></li>
323
<li> Please name monthly output in a way that it sorts chronologically  (e.g. mean_LST_Day_1km_h08v05_04.tif instead of mean_LST_Day_1km_h08v05_apr_4.tif )<br/></li>
324
<li> Please name directories on ECOcast with dates rather than &ldquo;new&rdquo;.  E.g. LST/20140304/*   That will make it easier to see which is the new version.</li>
325
<li> Should we consider also saving the SD of the observations in each pixel (in addition to the mean and n of observations)?</li>
326
</ol>
327

    
328
</body>
329

    
330
</html>
331

    
(10-10/16)