Revision f9b40867
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/results_interpolation_date_output_analyses.R | ||
---|---|---|
4 | 4 |
#Part 1: Script produces plots for every selected date |
5 | 5 |
#Part 2: Examine |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 |
#DATE: 03/18/2013
|
|
7 |
#DATE: 04/02/2013
|
|
8 | 8 |
|
9 | 9 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#???-- |
10 | 10 |
|
... | ... | |
36 | 36 |
out_path<- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data/" |
37 | 37 |
infile_covar<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script |
38 | 38 |
date_selected<-c("20000101") ##This is for year 2000!!! |
39 |
raster_prediction_obj<-"raster_prediction_obj__365d_GAM_fus5_all_lstd_03132013.RData"
|
|
39 |
raster_prediction_obj<-load_obj("raster_prediction_obj_dailyTmin_365d_GAM_fus5_all_lstd_03292013.RData")
|
|
40 | 40 |
#out_prefix<-"_365d_GAM_fus5_all_lstd_03132013" |
41 | 41 |
#out_prefix<-"_365d_GAM_fus5_all_lstd_03142013" #User defined output prefix |
42 |
out_prefix<-"_365d_GAM_fus5_all_lstd_03272013" #User defined output prefix
|
|
43 |
var<-"TMAX"
|
|
42 |
out_prefix<-"_365d_GAM_fus5_all_lstd_03292013" #User defined output prefix
|
|
43 |
var<-"TMIN"
|
|
44 | 44 |
#gam_fus_mod<-load_obj("gam_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
45 | 45 |
#validation_obj<-load_obj("gam_fus_validation_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
46 | 46 |
#clim_obj<-load_obj("gamclim_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
... | ... | |
52 | 52 |
"nobs_09","nobs_10","nobs_11","nobs_12") |
53 | 53 |
covar_names<-c(rnames,lc_names,lst_names) |
54 | 54 |
|
55 |
list_param<-list(in_path,out_path,script_path,raster_prediction_obj,infile_covar,covar_names,date_selected,var,out_prefix) |
|
56 |
names(list_param)<-c("in_path","out_path","script_path","raster_prediction_obj", |
|
55 |
list_param_results_analyses<-list(in_path,out_path,script_path,raster_prediction_obj,infile_covar,covar_names,date_selected,var,out_prefix)
|
|
56 |
names(list_param_results_analyses)<-c("in_path","out_path","script_path","raster_prediction_obj",
|
|
57 | 57 |
"infile_covar","covar_names","date_selected","var","out_prefix") |
58 | 58 |
|
59 | 59 |
setwd(in_path) |
... | ... | |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
### PLOTTING RESULTS FROM VENEZUELA INTERPOLATION FOR ANALYSIS |
77 |
#source(file.path(script_path,"results_interpolation_date_output_analyses_03182013.R"))
|
|
77 |
#source(file.path(script_path,"results_interpolation_date_output_analyses_04022013.R"))
|
|
78 | 78 |
#j=1 |
79 |
#plots_assessment_by_date(1,list_param) |
|
79 |
#plots_assessment_by_date(1,list_param_results_analyses) |
|
80 |
|
|
81 |
|
|
80 | 82 |
plots_assessment_by_date<-function(j,list_param){ |
81 | 83 |
|
82 | 84 |
date_selected<-list_param$date_selected |
... | ... | |
85 | 87 |
#validation_obj<-load_obj("gam_fus_validation_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
86 | 88 |
#clim_obj<-load_obj("gamclim_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
87 | 89 |
|
88 |
raster_prediction_obj<-load_obj(list_param$raster_prediction_obj)
|
|
89 |
#method_mod_obj<-raster_prediction_obj$method_mod_obj
|
|
90 |
raster_prediction_obj<-list_param$raster_prediction_obj
|
|
91 |
method_mod_obj<-raster_prediction_obj$method_mod_obj |
|
90 | 92 |
method_mod_obj<-raster_prediction_obj$gam_fus_mod #change later for any model type |
91 | 93 |
#validation_obj<-raster_prediction_obj$validation_obj |
92 | 94 |
validation_obj<-raster_prediction_obj$gam_fus_validation_mod #change later for any model type |
... | ... | |
94 | 96 |
clim_obj<-raster_prediction_obj$gamclim_fus_mod #change later for any model type |
95 | 97 |
|
96 | 98 |
if (var=="TMAX"){ |
97 |
y_var_name<-"dailyTmax" |
|
99 |
y_var_name<-"dailyTmax" |
|
100 |
y_var_month<-"TMax" |
|
98 | 101 |
} |
99 | 102 |
if (var=="TMIN"){ |
100 |
y_var_name<-"dailyTmin" |
|
103 |
y_var_name<-"dailyTmin" |
|
104 |
y_var_month <-"TMin" |
|
101 | 105 |
} |
102 | 106 |
|
103 | 107 |
## Read covariate stack... |
... | ... | |
114 | 118 |
LC_mask_rec[is.na(LC_mask_rec)]<-0 |
115 | 119 |
|
116 | 120 |
#determine index position matching date selected |
117 |
|
|
121 |
i_dates<-vector("list",length(date_selected)) |
|
118 | 122 |
for (j in 1:length(date_selected)){ |
119 | 123 |
for (i in 1:length(method_mod_obj)){ |
120 | 124 |
if(method_mod_obj[[i]]$sampling_dat$date==date_selected[j]){ |
... | ... | |
129 | 133 |
|
130 | 134 |
#Get raster stack of interpolated surfaces |
131 | 135 |
index<-i_dates[[j]] |
132 |
pred_temp<-as.character(method_mod_obj[[index]]$dailyTmax) #list of files
|
|
136 |
pred_temp<-as.character(method_mod_obj[[index]][[y_var_name]]) #list of files
|
|
133 | 137 |
rast_pred_temp<-stack(pred_temp) #stack of temperature predictions from models |
134 | 138 |
|
135 | 139 |
#Get validation metrics, daily spdf training and testing stations, monthly spdf station input |
... | ... | |
163 | 167 |
rmse<-metrics_v$rmse[nrow(metrics_v)] |
164 | 168 |
rmse_f<-metrics_s$rmse[nrow(metrics_s)] |
165 | 169 |
|
166 |
png(paste("LST_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp,
|
|
170 |
png(paste("LST_",y_var_month,"_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp,
|
|
167 | 171 |
out_prefix,".png", sep="")) |
168 |
plot(data_month$TMax,data_month$LST,xlab="Station mo Tmax",ylab="LST mo Tmax")
|
|
169 |
title(paste("LST vs TMax for",datelabel,sep=" "))
|
|
172 |
plot(data_month[[y_var_month]],data_month$LST,xlab=paste("Station mo ",y_var_month,sep=""),ylab=paste("LST mo ",y_var_month,sep=""))
|
|
173 |
title(paste("LST vs ", y_var_month,"for",datelabel,sep=" "))
|
|
170 | 174 |
abline(0,1) |
171 |
nb_point<-paste("n=",length(data_month$TMax),sep="")
|
|
175 |
nb_point<-paste("n=",length(data_month[[y_var_month]]),sep="")
|
|
172 | 176 |
mean_bias<-paste("Mean LST bias= ",format(mean(data_month$LSTD_bias,na.rm=TRUE),digits=3),sep="") |
173 | 177 |
#Add the number of data points on the plot |
174 | 178 |
legend("topleft",legend=c(mean_bias,nb_point),bty="n") |
... | ... | |
176 | 180 |
|
177 | 181 |
## Figure 2: Daily_tmax_monthly_TMax_scatterplot, modify for TMin!! |
178 | 182 |
|
179 |
png(paste("Daily_tmax_monthly_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp,
|
|
183 |
png(paste("Monhth_day_scatterplot_",y_var_name,"_",y_var_month,"_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp,
|
|
180 | 184 |
out_prefix,".png", sep="")) |
181 |
plot(dailyTmax~TMax,data=data_s,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in VE")
|
|
182 |
nb_point<-paste("ns=",length(data_s$TMax),sep="")
|
|
183 |
nb_point2<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="")
|
|
184 |
nb_point3<-paste("n_month=",length(data_month$TMax),sep="")
|
|
185 |
plot(data_s[[y_var_name]]~data_s[[y_var_month]],xlab=paste("Month") ,ylab=paste("Daily for",datelabel),main="across stations in VE")
|
|
186 |
nb_point<-paste("ns=",length(data_s[[y_var_month]]),sep="")
|
|
187 |
nb_point2<-paste("ns_obs=",length(data_s[[y_var_month]])-sum(is.na(data_s[[y_var_name]])),sep="")
|
|
188 |
nb_point3<-paste("n_month=",length(data_month[[y_var_month]]),sep="")
|
|
185 | 189 |
#Add the number of data points on the plot |
186 | 190 |
legend("topleft",legend=c(nb_point,nb_point2,nb_point3),bty="n",cex=0.8) |
187 | 191 |
dev.off() |
... | ... | |
189 | 193 |
## Figure 3: Predicted_tmax_versus_observed_scatterplot |
190 | 194 |
|
191 | 195 |
#This is for mod_kr!! add other models later... |
192 |
png(paste("Predicted_tmax_versus_observed_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
193 |
out_prefix,".png", sep="")) |
|
194 |
#plot(data_s$mod_kr~data_s[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
196 |
model_name<-"mod_kr" #can be looped through models later on... |
|
195 | 197 |
|
196 |
y_range<-range(c(data_s$mod_kr,data_v$mod_kr),na.rm=T) |
|
198 |
png(paste("Predicted_versus_observed_scatterplot_",y_var_name,"_",model_name,"_",sampling_dat$date,"_",sampling_dat$prop,"_", |
|
199 |
sampling_dat$run_samp,out_prefix,".png", sep="")) |
|
200 |
y_range<-range(c(data_s[[model_name]],data_v[[model_name]]),na.rm=T) |
|
197 | 201 |
x_range<-range(c(data_s[[y_var_name]],data_v[[y_var_name]]),na.rm=T) |
198 | 202 |
col_t<- c("black","red") |
199 | 203 |
pch_t<- c(1,2) |
200 |
plot(data_s$mod_kr,data_s[[y_var_name]],
|
|
204 |
plot(data_s[[model_name]],data_s[[y_var_name]],
|
|
201 | 205 |
xlab=paste("Actual daily for",datelabel),ylab="Pred daily", |
202 | 206 |
ylim=y_range,xlim=x_range,col=col_t[1],pch=pch_t[1]) |
203 |
points(data_v$mod_kr,data_v[[y_var_name]],col=col_t[2],pch=pch_t[2])
|
|
207 |
points(data_v[[model_name]],data_v[[y_var_name]],col=col_t[2],pch=pch_t[2])
|
|
204 | 208 |
grid(lwd=0.5, col="black") |
205 |
#plot(data_v$mod_kr~data_v[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
206 | 209 |
abline(0,1) |
207 | 210 |
legend("topleft",legend=c("training","testing"),pch=pch_t,col=col_t,bty="n",cex=0.8) |
208 |
title(paste("Predicted_tmax_versus_observed_scatterplot for",datelabel,sep=" ")) |
|
209 |
nb_point1<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="") |
|
211 |
title(paste("Predicted_versus_observed_",y_var_name,"_",model_name,"_",datelabel,sep=" ")) |
|
212 |
nb_point1<-paste("ns_obs=",length(data_s[[y_var_name]])-sum(is.na(data_s[[model_name]])),sep="") |
|
213 |
nb_point2<-paste("nv_obs=",length(data_v[[y_var_name]])-sum(is.na(data_v[[model_name]])),sep="") |
|
214 |
|
|
210 | 215 |
rmse_str1<-paste("RMSE= ",format(rmse,digits=3),sep="") |
211 | 216 |
rmse_str2<-paste("RMSE_f= ",format(rmse_f,digits=3),sep="") |
212 | 217 |
|
213 | 218 |
#Add the number of data points on the plot |
214 |
legend("bottomright",legend=c(nb_point1,rmse_str1,rmse_str2),bty="n",cex=0.8) |
|
219 |
legend("bottomright",legend=c(nb_point1,nb_point2,rmse_str1,rmse_str2),bty="n",cex=0.8)
|
|
215 | 220 |
dev.off() |
216 | 221 |
|
217 |
## Figure 5: prediction raster images
|
|
218 |
png(paste("Raster_prediction_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
222 |
## Figure 4a: prediction raster images
|
|
223 |
png(paste("Raster_prediction_",y_var_name,"_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp,
|
|
219 | 224 |
out_prefix,".png", sep="")) |
220 | 225 |
#paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
221 | 226 |
names(rast_pred_temp)<-paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
... | ... | |
223 | 228 |
levelplot(rast_pred_temp) |
224 | 229 |
dev.off() |
225 | 230 |
|
226 |
## Figure 5b: prediction raster images
|
|
231 |
## Figure 4b: prediction raster images
|
|
227 | 232 |
png(paste("Raster_prediction_plot",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
228 | 233 |
out_prefix,".png", sep="")) |
229 | 234 |
#paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
... | ... | |
232 | 237 |
plot(rast_pred_temp) |
233 | 238 |
dev.off() |
234 | 239 |
|
235 |
## Figure 6: training and testing stations used
|
|
236 |
png(paste("Training_testing_stations_map_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
240 |
## Figure 5: training and testing stations used
|
|
241 |
png(paste("Training_testing_stations_map_",y_var_name,"_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp,
|
|
237 | 242 |
out_prefix,".png", sep="")) |
238 | 243 |
plot(raster(rast_pred_temp,layer=5)) |
239 | 244 |
plot(data_s,col="black",cex=1.2,pch=2,add=TRUE) |
... | ... | |
243 | 248 |
pch=c(2,1),bty="n") |
244 | 249 |
dev.off() |
245 | 250 |
|
246 |
## Figure 7: monthly stations used
|
|
251 |
## Figure 6: monthly stations used
|
|
247 | 252 |
|
248 |
png(paste("Monthly_data_study_area",
|
|
253 |
png(paste("Monthly_data_study_area_", y_var_name,
|
|
249 | 254 |
out_prefix,".png", sep="")) |
250 | 255 |
plot(raster(rast_pred_temp,layer=5)) |
251 | 256 |
plot(data_month,col="black",cex=1.2,pch=4,add=TRUE) |
252 | 257 |
title("Monthly ghcn station in Venezuela for January") |
253 | 258 |
dev.off() |
254 | 259 |
|
255 |
## Figure 8: delta surface and bias
|
|
260 |
## Figure 7: delta surface and bias
|
|
256 | 261 |
|
257 |
png(paste("Bias_delta_surface_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
262 |
png(paste("Bias_delta_surface_",y_var_name,"_",sampling_dat$date[i],"_",sampling_dat$prop[i],
|
|
258 | 263 |
"_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) |
259 | 264 |
|
260 | 265 |
bias_rast<-stack(clim_obj[[index]]$bias) |
Also available in: Unified diff
results output figures modifications to allow TMIN output figures