Revision fae9ccb1
Added by Benoit Parmentier about 10 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 08/14/2014
|
|
8 |
#MODIFIED ON: 08/16/2014
|
|
9 | 9 |
#Version: 3 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 3 global using 2 specific tiles |
... | ... | |
104 | 104 |
CRS_WGS84<-c("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
105 | 105 |
|
106 | 106 |
region_name <- "world" |
107 |
|
|
107 |
# |
|
108 | 108 |
###Table 1: Average accuracy metrics |
109 | 109 |
###Table 2: daily accuracy metrics for all tiles |
110 | 110 |
#lf_tables <- list.files(out_dir,) |
... | ... | |
114 | 114 |
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",") |
115 | 115 |
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",") |
116 | 116 |
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1) |
117 |
gam_diagnostic_df <- read.table(file=file.path(out_dir,"gam_diagnostic_df_run4_global_analyses_08142014.txt"),sep=",") |
|
117 | 118 |
|
118 | 119 |
########################## START SCRIPT ############################## |
119 | 120 |
|
... | ... | |
283 | 284 |
} |
284 | 285 |
|
285 | 286 |
|
287 |
##### Diagnostic gam |
|
288 |
|
|
289 |
gam_diagnostic_df |
|
290 |
|
|
291 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod1"),main="mod1 and term=s(lat,lon)",ylab="RMSE_f",xlab="k") |
|
292 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod2"),main="mod2 and term=s(lat,lon)",ylab="RMSE_f",xlab="k") |
|
293 |
|
|
294 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod1"),main="mod1 and term=s(elev_s)",ylab="RMSE_f",xlab="k") |
|
295 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod2"),main="mod2 and term=s(elev_s)",ylab="RMSE_f",xlab="k") |
|
296 |
|
|
297 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod2"),main="mod2 and term=s(LST)",ylab="RMSE_f",xlab="k") |
|
298 |
|
|
299 |
res_pix <-480 |
|
300 |
|
|
301 |
png(filename="test.png", |
|
302 |
width=0.5*res_pix,height=6*res_pix) |
|
303 |
|
|
304 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
305 |
#title("RMSE per model over all tiles") |
|
306 |
#bwplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2"),) |
|
307 |
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2"),type="p") |
|
308 |
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod1"),type="p") |
|
309 |
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod1" & tile_id=="tile_7"),type="b") |
|
310 |
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2" & tile_id=="tile_7"),type="b") |
|
311 |
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod1" & tile_id=="tile_8"),type="b") |
|
312 |
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2" & tile_id=="tile_8"),type="b") |
|
313 |
|
|
314 |
xyplot(rmse~k | term + month,group=tile_id ,data=subset(gam_diagnostic_df,pred_mod=="mod1"),type="b", |
|
315 |
auto.key=list(space = "top", cex=1.0,columns=8)) |
|
316 |
dev.off() |
|
317 |
|
|
318 |
boxplot(rmse~month,data=subset(gam_diagnostic_df,pred_mod=="mod2")) |
|
319 |
boxplot(rmse~month,data=subset(gam_diagnostic_df,pred_mod=="mod1")) |
|
320 |
|
|
321 |
gam_diagnostic_df$month <- as.factor(gam_diagnostic_df$month) |
|
322 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod1"),main="mod1 and term=s(lat,lon)",ylab="RMSE_f",xlab="k") |
|
323 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod2"),main="mod2 and term=s(lat,lon)",ylab="RMSE_f",xlab="k") |
|
324 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod1")) |
|
325 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod2")) |
|
326 |
|
|
327 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(LST)" & pred_mod=="mod2")) |
|
328 |
|
|
329 |
boxplot(rmse~n,data=subset(gam_diagnostic_df,pred_mod=="mod2")) |
|
330 |
boxplot(rmse~n,data=subset(gam_diagnostic_df,pred_mod=="mod1")) |
|
331 |
|
|
332 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod1" & tile_id=="tile_8")) |
|
333 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod1" & tile_id=="tile_7")) |
|
334 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod2" & tile_id=="tile_8")) |
|
335 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod2" & tile_id=="tile_7")) |
|
336 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod1" & tile_id=="tile_8")) |
|
337 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod1" & tile_id=="tile_7")) |
|
286 | 338 |
|
339 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod1" & tile_id=="tile_7" & month==1)) |
|
340 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod1" & tile_id=="tile_7" & month==7)) |
|
341 |
|
|
342 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod1" & tile_id=="tile_7" & month==1)) |
|
343 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod1" & tile_id=="tile_7" & month==7)) |
|
344 |
|
|
345 |
boxplot(rmse~month,data=subset(gam_diagnostic_df,pred_mod=="mod1" & tile_id=="tile_7")) |
|
346 |
boxplot(rmse~month,data=subset(gam_diagnostic_df,pred_mod=="mod2" & tile_id=="tile_7")) |
|
347 |
|
|
348 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(lat,lon)" & pred_mod=="mod2")) |
|
349 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod1")) |
|
350 |
boxplot(rmse~k,data=subset(gam_diagnostic_df,term=="s(elev_s)" & pred_mod=="mod2")) |
|
351 |
|
|
352 |
plot(n~tile_id,data=gam_diagnostic_df,type="h") |
|
353 |
|
|
354 |
|
|
355 |
# |
|
356 |
## Figure 3b |
|
357 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_prefix,".png",sep=""), |
|
358 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
359 |
|
|
360 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
361 |
title("RMSE per model over all tiles") |
|
362 |
|
|
363 |
dev.off() |
|
287 | 364 |
|
288 | 365 |
################ |
289 | 366 |
### Figure 4: plot predicted tiff for specific date per model |
Also available in: Unified diff
run4 assessment NEX part2: generating gam diagnostic for different k values