Project

General

Profile

Download (18.6 KB) Statistics
| Branch: | Revision:
1
##################    MULTI SAMPLING GAM FUSION METHOD ASSESSMENT ####################################
2
############################ Merging LST and station data ##########################################
3
#This script interpolates tmax values using MODIS LST and GHCND station data                      
4
#interpolation area. It requires the text file of stations and a shape file of the study area.           
5
#Note that the projection for both GHCND and study area is lonlat WGS84.       
6
#Options to run this program are:
7
#1) Multisampling: vary the porportions of hold out and use random samples for each run
8
#2)Constant sampling: use the same sample over the runs
9
#3)over dates: run over for example 365 dates without mulitsampling
10
#4)use seed number: use seed if random samples must be repeatable
11
#5)GAM fusion: possibilty of running GAM+FUSION or GAM separately 
12
#AUTHOR: Benoit Parmentier                                                                        
13
#DATE: 12/27/2012                                                                                 
14
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363--                                   
15
###################################################################################################
16

    
17
###Loading R library and packages                                                      
18
library(gtools)                                         # loading some useful tools 
19
library(mgcv)                                           # GAM package by Simon Wood
20
library(sp)                                             # Spatial pacakge with class definition by Bivand et al.
21
library(spdep)                               # Spatial pacakge with methods and spatial stat. by Bivand et al.
22
library(rgdal)                               # GDAL wrapper for R, spatial utilities
23
library(gstat)                               # Kriging and co-kriging by Pebesma et al.
24
library(fields)                              # NCAR Spatial Interpolation methods such as kriging, splines
25
library(raster)                              # Hijmans et al. package for raster processing
26
library(rasterVis)
27
library(parallel)                            # Urbanek S. and Ripley B., package for multi cores & parralel processing
28
library(reshape)
29
library(plotrix)
30
### Parameters and argument
31

    
32
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp"             #GHCN shapefile containing variables for modeling 2010                 
33
infile2<-"list_365_dates_04212012.txt"
34
infile3<-"LST_dates_var_names.txt"                        #LST dates name
35
infile4<-"models_interpolation_05142012.txt"              #Interpolation model names
36
infile5<-"mean_day244_rescaled.rst"                       #Raster or grid for the locations of predictions
37
#infile6<-"lst_climatology.txt"
38
infile6<-"LST_files_monthly_climatology.txt"
39
inlistf<-"list_files_05032012.txt"                        #Stack of images containing the Covariates
40

    
41
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM"
42

    
43
setwd(path)
44
#Station location of the study area
45
stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE)
46
#GHCN Database for 1980-2010 for study area (OR) 
47
data3<-read.table(paste(path,"/","ghcn_data_TMAXy1980_2010_OR_0602012.txt",sep=""),sep=",", header=TRUE)
48

    
49
nmodels<-9   #number of models running
50
y_var_name<-"dailyTmax"
51
predval<-1
52
prop<-0.3             #Proportion of testing retained for validation   
53
#prop<-0.25
54
seed_number<- 100  #if seed zero then no seed?                                                                 #Seed number for random sampling
55
out_prefix<-"_365d_GAM_fus5_all_lstd_12302012"                #User defined output prefix
56
#out_prefix<-"_365d_GAM_12272012"                #User defined output prefix
57

    
58
bias_val<-0            #if value 1 then training data is used in the bias surface rather than the all monthly stations
59
bias_prediction<-1     #if value 1 then use GAM for the BIAS prediction otherwise GAM direct repdiction for y_var (daily tmax)
60
nb_sample<-1           #number of time random sampling must be repeated for every hold out proportion
61
prop_min<-0.3          #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
62
prop_max<-0.3
63
step<-0         
64
constant<-0             #if value 1 then use the same samples as date one for the all set of dates
65
#projection used in the interpolation of the study area
66
CRS_interp<-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
67
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
68

    
69
source("GAM_fusion_function_multisampling_12302012.R")
70

    
71
###################### START OF THE SCRIPT ########################
72

    
73
###Reading the station data and setting up for models' comparison
74
filename<-sub(".shp","",infile1)             #Removing the extension from file.
75
ghcn<-readOGR(".", filename)                 #reading shapefile 
76

    
77
CRS<-proj4string(ghcn)                       #Storing projection information (ellipsoid, datum,etc.)
78

    
79
mean_LST<- readGDAL(infile5)                 #Reading the whole raster in memory. This provides a grid for kriging
80
proj4string(mean_LST)<-CRS                   #Assigning coordinate information to prediction grid.
81

    
82
ghcn <- transform(ghcn,Northness = cos(ASPECT*pi/180)) #Adding a variable to the dataframe
83
ghcn <- transform(ghcn,Eastness = sin(ASPECT*pi/180))  #adding variable to the dataframe.
84
ghcn <- transform(ghcn,Northness_w = sin(slope*pi/180)*cos(ASPECT*pi/180)) #Adding a variable to the dataframe
85
ghcn <- transform(ghcn,Eastness_w = sin(slope*pi/180)*sin(ASPECT*pi/180))  #adding variable to the dataframe.
86

    
87
#Remove NA for LC and CANHEIGHT
88
ghcn$LC1[is.na(ghcn$LC1)]<-0
89
ghcn$LC3[is.na(ghcn$LC3)]<-0
90
ghcn$CANHEIGHT[is.na(ghcn$CANHEIGHT)]<-0
91
ghcn$LC4[is.na(ghcn$LC4)]<-0
92
ghcn$LC6[is.na(ghcn$LC6)]<-0
93

    
94
dates <-readLines(paste(path,"/",infile2, sep=""))
95
LST_dates <-readLines(paste(path,"/",infile3, sep=""))
96
models <-readLines(paste(path,"/",infile4, sep=""))
97

    
98
##Extracting the variables values from the raster files                                             
99

    
100
lines<-read.table(paste(path,"/",inlistf,sep=""), sep=" ")                  #Column 1 contains the names of raster files
101
inlistvar<-lines[,1]
102
inlistvar<-paste(path,"/",as.character(inlistvar),sep="")
103
covar_names<-as.character(lines[,2])                                         #Column two contains short names for covaraites
104

    
105
s_raster<- stack(inlistvar)                                                  #Creating a stack of raster images from the list of variables.
106
layerNames(s_raster)<-covar_names                                            #Assigning names to the raster layers
107
projection(s_raster)<-CRS
108

    
109
#stat_val<- extract(s_raster, ghcn3)                                          #Extracting values from the raster stack for every point location in coords data frame.
110
pos<-match("ASPECT",layerNames(s_raster)) #Find column with name "value"
111
r1<-raster(s_raster,layer=pos)             #Select layer from stack
112
pos<-match("slope",layerNames(s_raster)) #Find column with name "value"
113
r2<-raster(s_raster,layer=pos)             #Select layer from stack
114
N<-cos(r1*pi/180)
115
E<-sin(r1*pi/180)
116
Nw<-sin(r2*pi/180)*cos(r1*pi/180)   #Adding a variable to the dataframe
117
Ew<-sin(r2*pi/180)*sin(r1*pi/180)   #Adding variable to the dataframe.
118

    
119
pos<-match("LC1",layerNames(s_raster)) #Find column with name "value"
120
LC1<-raster(s_raster,layer=pos)             #Select layer from stack
121
s_raster<-dropLayer(s_raster,pos)
122
LC1[is.na(LC1)]<-0
123

    
124
pos<-match("LC3",layerNames(s_raster)) #Find column with name "value"
125
LC3<-raster(s_raster,layer=pos)             #Select layer from stack
126
s_raster<-dropLayer(s_raster,pos)
127
LC3[is.na(LC3)]<-0
128

    
129
pos<-match("LC4",layerNames(s_raster)) #Find column with name "value"
130
LC4<-raster(s_raster,layer=pos)             #Select layer from stack
131
s_raster<-dropLayer(s_raster,pos)
132
LC4[is.na(LC4)]<-0
133

    
134
pos<-match("LC6",layerNames(s_raster)) #Find column with name "value"
135
LC6<-raster(s_raster,layer=pos)             #Select layer from stack
136
s_raster<-dropLayer(s_raster,pos)
137
LC6[is.na(LC6)]<-0
138

    
139
LC_s<-stack(LC1,LC3,LC4,LC6)
140
layerNames(LC_s)<-c("LC1_forest","LC3_grass","LC4_crop","LC6_urban")
141
plot(LC_s)
142

    
143
pos<-match("CANHEIGHT",layerNames(s_raster)) #Find column with name "value"
144
CANHEIGHT<-raster(s_raster,layer=pos)             #Select layer from stack
145
s_raster<-dropLayer(s_raster,pos)
146
CANHEIGHT[is.na(CANHEIGHT)]<-0
147
pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "ELEV_SRTM"
148
ELEV_SRTM<-raster(s_raster,layer=pos)             #Select layer from stack on 10/30
149
s_raster<-dropLayer(s_raster,pos)
150
ELEV_SRTM[ELEV_SRTM <0]<-NA
151

    
152
xy<-coordinates(r1)  #get x and y projected coordinates...
153
xy_latlon<-project(xy, CRS, inv=TRUE) # find lat long for projected coordinats (or pixels...)
154
lon<-raster(xy_latlon) #Transform a matrix into a raster object ncol=ncol(r1), nrow=nrow(r1))
155
ncol(lon)<-ncol(r1)
156
nrow(lon)<-nrow(r1)
157
extent(lon)<-extent(r1)
158
projection(lon)<-CRS  #At this stage this is still an empty raster with 536 nrow and 745 ncell 
159
lat<-lon
160
values(lon)<-xy_latlon[,1]
161
values(lat)<-xy_latlon[,2]
162

    
163
r<-stack(N,E,Nw,Ew,lon,lat,LC1,LC3,LC4,LC6, CANHEIGHT,ELEV_SRTM)
164
rnames<-c("Northness","Eastness","Northness_w","Eastness_w", "lon","lat","LC1","LC3","LC4","LC6","CANHEIGHT","ELEV_SRTM")
165
layerNames(r)<-rnames
166
s_raster<-addLayer(s_raster, r)
167

    
168
#s_sgdf<-as(s_raster,"SpatialGridDataFrame") #Conversion to spatial grid data frame
169

    
170
####### Preparing LST stack of climatology...
171

    
172
#l=list.files(pattern="mean_month.*rescaled.rst")
173
l <-readLines(paste(path,"/",infile6, sep=""))
174
molst<-stack(l)  #Creating a raster stack...
175
#setwd(old)
176
molst<-molst-273.16  #K->C          #LST stack of monthly average...
177
idx <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month')
178
molst <- setZ(molst, idx)
179
layerNames(molst) <- month.abb
180

    
181
######  Preparing tables for model assessment: specific diagnostic/metrics
182

    
183
#Model assessment: specific diagnostics/metrics
184
results_AIC<- matrix(1,1,nmodels+3)  
185
results_GCV<- matrix(1,1,nmodels+3)
186
results_DEV<- matrix(1,1,nmodels+3)
187
#results_RMSE_f<- matrix(1,length(models)+3)
188

    
189
#Model assessment: general diagnostic/metrics 
190
results_RMSE <- matrix(1,1,nmodels+4)
191
results_MAE <- matrix(1,1,nmodels+4)
192
results_ME <- matrix(1,1,nmodels+4)       #There are 8+1 models
193
results_R2 <- matrix(1,1,nmodels+4)       #Coef. of determination for the validation dataset
194

    
195
results_RMSE_f<- matrix(1,1,nmodels+4)    #RMSE fit, RMSE for the training dataset
196
results_MAE_f <- matrix(1,1,nmodels+4)
197

    
198
######## Preparing monthly averages from the ProstGres database and extracting covarvariates from stack
199

    
200
# do this work outside of (before) this function
201
# to avoid making a copy of the data frame inside the function call
202
date1<-ISOdate(data3$year,data3$month,data3$day) #Creating a date object from 3 separate column
203
date2<-as.POSIXlt(as.Date(date1))
204
data3$date<-date2
205
d<-subset(data3,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality: 193 stations
206
#May need some screeing??? i.e. range of temp and elevation...
207
d1<-aggregate(value~station+month, data=d, mean)  #Calculate monthly mean for every station in OR
208
id<-as.data.frame(unique(d1$station))     #Unique station in OR for year 2000-2010: 193 but 7 loss of monthly avg    
209

    
210
dst<-merge(d1, stat_loc, by.x="station", by.y="STAT_ID")   #Inner join all columns are retained
211

    
212
#This allows to change only one name of the data.frame
213
pos<-match("value",names(dst)) #Find column with name "value"
214
names(dst)[pos]<-c("TMax")
215
dst$TMax<-dst$TMax/10                #TMax is the average max temp for monthy data
216
#dstjan=dst[dst$month==9,]  #dst contains the monthly averages for tmax for every station over 2000-2010
217

    
218
#Extracting covariates from stack
219
coords<- dst[c('lon','lat')]              #Define coordinates in a data frame
220
coordinates(dst)<-coords                      #Assign coordinates to the data frame
221
proj4string(dst)<-CRS_locs_WGS84                  #Assign coordinates reference system in PROJ4 format
222
dst_month<-spTransform(dst,CRS(CRS_interp))     #Project from WGS84 to new coord. system
223

    
224
stations_val<-extract(s_raster,dst_month)  #extraction of the infomration at station location
225
stations_val<-as.data.frame(stations_val)
226
dst_extract<-cbind(dst_month,stations_val)
227
dst<-dst_extract
228
#Now clean and screen monthly values
229
dst_all<-dst
230
dst<-subset(dst,dst$TMax>-15 & dst$TMax<40)
231
dst<-subset(dst,dst$ELEV_SRTM>0) #This will drop two stations...or 24 rows
232

    
233
######### Preparing daily values for training and testing
234

    
235
#Screening for bad values: value is tmax in this case
236
#ghcn$value<-as.numeric(ghcn$value)
237
ghcn_all<-ghcn
238
ghcn_test<-subset(ghcn,ghcn$value>-150 & ghcn$value<400)
239
ghcn_test2<-subset(ghcn_test,ghcn_test$ELEV_SRTM>0)
240
ghcn<-ghcn_test2
241
#coords<- ghcn[,c('x_OR83M','y_OR83M')]
242

    
243
##Sampling: training and testing sites.
244

    
245
if (seed_number>0) {
246
  set.seed(seed_number)                        #Using a seed number allow results based on random number to be compared...
247
}
248
nel<-length(dates)
249
dates_list<-vector("list",nel) #list of one row data.frame
250

    
251
prop_range<-(seq(from=prop_min,to=prop_max,by=step))*100     #range of proportion to run
252
sn<-length(dates)*nb_sample*length(prop_range)               #Number of samples to run
253

    
254
for(i in 1:length(dates)){
255
  d_tmp<-rep(dates[i],nb_sample*length(prop_range)) #repeating same date
256
  s_nb<-rep(1:nb_sample,length(prop_range))         #number of random sample per proportion
257
  prop_tmp<-sort(rep(prop_range, nb_sample))
258
  tab_run_tmp<-cbind(d_tmp,s_nb,prop_tmp)
259
  dates_list[[i]]<-tab_run_tmp
260
}
261

    
262
sampling_dat<-as.data.frame(do.call(rbind,dates_list))
263
names(sampling_dat)<-c("date","run_samp","prop")
264

    
265
for(i in 2:3){            # start of the for loop #1
266
  sampling_dat[,i]<-as.numeric(as.character(sampling_dat[,i]))  
267
}
268

    
269
sampling_dat$date<- as.character(sampling_dat[,1])
270
#ghcn.subsets <-lapply(dates, function(d) subset(ghcn, date==d)) #this creates a list of 10 or 365 subsets dataset based on dates
271
ghcn.subsets <-lapply(as.character(sampling_dat$date), function(d) subset(ghcn, date==d)) #this creates a list of 10 or 365 subsets dataset based on dates
272

    
273
## adding choice of constant sample 
274
if (seed_number>0) {
275
  set.seed(seed_number)                        #Using a seed number allow results based on random number to be compared...
276
}
277

    
278
sampling<-vector("list",length(ghcn.subsets))
279
sampling_station_id<-vector("list",length(ghcn.subsets))
280
for(i in 1:length(ghcn.subsets)){
281
  n<-nrow(ghcn.subsets[[i]])
282
  prop<-(sampling_dat$prop[i])/100
283
  ns<-n-round(n*prop)   #Create a sample from the data frame with 70% of the rows
284
  nv<-n-ns              #create a sample for validation with prop of the rows
285
  ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly
286
  ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training)
287
  #Find the corresponding 
288
  data_sampled<-ghcn.subsets[[i]][ind.training,] #selected the randomly sampled stations
289
  station_id.training<-data_sampled$station     #selected id for the randomly sampled stations (115)
290
  #Save the information
291
  sampling[[i]]<-ind.training
292
  sampling_station_id[[i]]<- station_id.training
293
}
294
## Use same samples across the year...
295
if (constant==1){
296
  sampled<-sampling[[1]]
297
  data_sampled<-ghcn.subsets[[1]][sampled,] #selected the randomly sampled stations
298
  station_sampled<-data_sampled$station     #selected id for the randomly sampled stations (115)
299
  list_const_sampling<-vector("list",sn)
300
  list_const_sampling_station_id<-vector("list",sn)
301
  for(i in 1:sn){
302
    station_id.training<-intersect(station_sampled,ghcn.subsets[[i]]$station)
303
    ind.training<-match(station_id.training,ghcn.subsets[[i]]$station)
304
    list_const_sampling[[i]]<-ind.training
305
    list_const_sampling_station_id[[i]]<-station_id.training
306
  }
307
  sampling<-list_const_sampling 
308
  sampling_station_id<-list_const_sampling_station_id
309
}
310

    
311
######## Prediction for the range of dates and sampling data
312

    
313
#gam_fus_mod<-mclapply(1:length(dates), runGAMFusion,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement
314
#gam_fus_mod_s<-mclapply(1:1, runGAMFusion,mc.preschedule=FALSE,mc.cores = 1) #This is the end bracket from mclapply(...) statement
315
gam_fus_mod_s<-mclapply(1:length(ghcn.subsets), runGAMFusion,mc.preschedule=FALSE,mc.cores = 9) #This is the end bracket from mclapply(...) statement
316
#gam_fus_mod2<-mclapply(4:4, runGAMFusion,mc.preschedule=FALSE,mc.cores = 1) #This is the end bracket from mclapply(...) statement
317

    
318
save(gam_fus_mod_s,file= paste(path,"/","results2_fusion_Assessment_measure_all",out_prefix,".RData",sep=""))
319

    
320
## Plotting and saving diagnostic measures
321

    
322
tb<-gam_fus_mod_s[[1]][[3]][0,]  #empty data frame with metric table structure that can be used in rbinding...
323
tb_tmp<-gam_fus_mod_s #copy
324

    
325
for (i in 1:length(tb_tmp)){
326
  tmp<-tb_tmp[[i]][[3]]
327
  tb<-rbind(tb,tmp)
328
}
329
rm(tb_tmp)
330

    
331
for(i in 4:ncol(tb)){            # start of the for loop #1
332
  tb[,i]<-as.numeric(as.character(tb[,i]))  
333
}
334

    
335
metrics<-as.character(unique(tb$metric))            #Name of accuracy metrics (RMSE,MAE etc.)
336
tb_metric_list<-vector("list",length(metrics))
337

    
338
for(i in 1:length(metrics)){            # Reorganizing information in terms of metrics 
339
  metric_name<-paste("tb_",metrics[i],sep="")
340
  tb_metric<-subset(tb, metric==metrics[i])
341
  tb_metric<-cbind(tb_metric,sampling_dat[,2:3])
342
  assign(metric_name,tb_metric)
343
  tb_metric_list[[i]]<-tb_metric
344
}
345

    
346
tb_diagnostic<-do.call(rbind,tb_metric_list)
347
tb_diagnostic[["prop"]]<-as.factor(tb_diagnostic[["prop"]])
348

    
349
mod_pat<-glob2rx("mod*")   
350
mod_var<-grep(mod_pat,names(tb_diagnostic),value=TRUE) # using grep with "value" extracts the matching names         
351

    
352
t<-melt(tb_diagnostic,
353
        measure=mod_var, 
354
        id=c("dates","metric","prop"),
355
        na.rm=F)
356
avg_tb<-cast(t,metric+prop~variable,mean)
357
median_tb<-cast(t,metric+prop~variable,median)
358
avg_tb[["prop"]]<-as.numeric(as.character(avg_tb[["prop"]]))
359
avg_RMSE<-subset(avg_tb,metric=="RMSE")
360

    
361
sampling_obj<-list(sampling_dat=sampling_dat,training=sampling, training_id=sampling_station_id, tb=tb_diagnostic)
362

    
363
write.table(avg_tb, file= paste(path,"/","results2_fusion_Assessment_measure_avg_",out_prefix,".txt",sep=""), sep=",")
364
write.table(median_tb, file= paste(path,"/","results2_fusion_Assessment_measure_median_",out_prefix,".txt",sep=""), sep=",")
365
write.table(tb_diagnostic, file= paste(path,"/","results2_fusion_Assessment_measure",out_prefix,".txt",sep=""), sep=",")
366
write.table(tb, file= paste(path,"/","results2_fusion_Assessment_measure_all",out_prefix,".txt",sep=""), sep=",")
367

    
368
save(sampling_obj, file= paste(path,"/","results2_fusion_sampling_obj",out_prefix,".RData",sep=""))
369
#save(gam_fus_mod_s,file= paste(path,"/","results2_fusion_Assessment_measure_all",out_prefix,".RData",sep=""))
370
gam_fus_mod_obj<-list(gam_fus_mod=gam_fus_mod_s,sampling_obj=sampling_obj)
371
save(gam_fus_mod_obj,file= paste(path,"/","results_mod_obj_",out_prefix,".RData",sep=""))
372

    
373
#### END OF SCRIPT
(8-8/34)